విద్యుదయస్కాంత వర్ణపటం

వికీపీడియా నుండి
ఇక్కడికి గెంతు: మార్గసూచీ, వెతుకు
వివిధ అవధులలో గల పౌనఃపున్యాలు మరియు తరంగదైర్ఘ్యాలు గలిగిన విద్యుదయస్కాంత వర్ణపటం లో గల వివిధ తరంగాలు

"విద్యుదయస్కాంత వర్ణపటం" అనగా వివిధ అవథులలో గల పౌనఃపున్యాలతో కూడిన విద్యుదయస్కాంత వికిరణాల సముదాయం. [1] ఒక వస్తువు యొక్క విద్యుదయస్కాంత వర్ణపటం అనగా ఆ వస్తువు నుంది ఉద్గారమైన లేదా శోషించుకున్న విద్యుదయస్కాంత వికిరణాల సముదాయం అనే వేరొక అర్థం కూడా కలదు.

విద్యుదయస్కాంత వర్ణపటం అతి తక్కువ పౌనఃపున్యము గల నవీన రేదియో సమాచార వ్యవస్థ నుండి తక్కువ తరంగ దైర్ఘ్యం గల గామా కిరనాల వరకు విస్తరించి ఉన్నాయి. యివి కొన్ని వెల కిలోమీటర్లు తరంగదైర్ఘ్యం నుండి ఒక పరమాణువు లో అతి చిన్న భాగం పరిమాణం వరకు విస్తరించి యున్నాయి.వీటిలో అతి ఎక్కువ తరంగ దైర్ఘ్యాల అవథి విశ్వం పరిమాణమంత ఉంటె అతి తక్కువ తరంగ దైర్ఘ్యాల అవథి ప్లాంక్ దైర్ఘ్యం లో అతి చిన్న భాగం వరకు ఉంటుంది,[2] ఈ విద్యుదయస్కాంత వర్ణపటం అవిచ్ఛిన్నంగా అనంతం వరకు వ్యాపించి ఉంటుంది.

విద్యుదయస్కాంత వర్ణపటాన్ని ఎక్కువగా విజ్ఞానశాస్త్రములో వర్ణపటశాస్త్రములో పదార్థ నిర్మాణమును అథ్యయనం చేయుటకు ఉపయోగిస్తారు..[3] వర్ణపటంలో వివిధ భాగముల లో గల వికిరణాలు సమాచార రంగం మరియు ఉత్పాదన రంగంలో కూడా ఉపయోగిస్తారు.(ఉపయోగాల గూర్చి చూడండివిద్యుదయస్కాంత వికిరణాలు)

Legend[4][5][6]
γ= Gamma rays MIR= Mid infrared HF= High freq.
HX= Hard X-rays FIR= Far infrared MF= Medium freq.
SX= Soft X-rays Radio waves LF= Low freq.
EUV= Extreme ultraviolet EHF= Extremely high freq. VLF= Very low freq.
NUV= Near ultraviolet SHF= Super high freq. VF/ULF= Voice freq.
Visible light UHF= Ultra high freq. SLF= Super low freq.
NIR= Near Infrared VHF= Very high freq. ELF= Extremely low freq.
Freq=Frequency

విద్యుదయస్కాంత వర్ణపటం కనుగొను చరిత్ర[మార్చు]

చరిత్ర ప్రకారం, కాంతి అనునది విద్యుదయస్కాంత వర్ణపటం లో తెలిసిన భాగము. పురాతన గ్రీకు శాస్త్రవేత్తలు కాంతి ఋజు మార్గంలో ప్రయాణిస్తుందని మరియు వాటి ధర్మాలైన పరావర్తనం, వక్రీభవనం లను అధ్యయనం చేశారు. ఈ సిద్ధాంతాలు కొన్ని సంవత్సరాలు కొనసాగినప్పటికీ 16వ మరియు 17 వ శతాబ్దాలలో కాంతికి కణ మరియు తరంగ స్వభావం కలదని అనేక సిద్ధాంతములు వెలువడినవి.

కాంతి కాకుండా మిగిలిన విద్యుదయస్కాంత తరంగాలు క్రీ.శ 1800 సం. లో విల్లియం హెర్షెల్ అనే శాస్త్రవేత్త పరారుణ వికిరణాలు కనుగొనుటలో మొట్టమొదట తెలిసినవి. ఆయన గాజు పట్టకం నుండి వెలువదిన వర్ణపటంలో వివిధ రంగుల యొక్క ఉష్ణోగ్రతలను అధ్యయనం చేశాడు.అతడు ఎరుపు రంగు తర్వాత హెచ్చు ఉష్ణోగ్రతలను గమనించాడు.ఎరుపు రంగు తర్వాత కాంతి రంగులు కనిపించనప్పటికీ ఈ ఉష్ణోగ్రతా మార్పు రావటానికి కారణం "కెలోరిఫిక్ కిరణాలు" అని సైద్ధాంతీకరించాడు. ఆ తర్వాత సంవత్సరం జోహన్న్ రిట్టెర్ అనే శాస్త్రవేత్త పట్టకం నుంది వెలువడిన వర్ణపటంలో ఊదా రంగు ముందు కూడా కిరణాలు ఉన్నాయని గననించి వాటికి "రసాయన కిరణాలు" అని నామకరణం చేశాడు.(కొన్ని రసాయన చర్యల ద్వారా కంటికి కనబడని కిరణాలు ) ఈ కిరణాలు కంటికి కనిపించే ఊదారంగు వలె ఉన్నయని తెలియ జేసి తర్వాత వాటికి అతినీలలోహిత వికిరణాలు అని పేరు పెట్టాడు.

మొట్టమొదట 1845 లో విద్యుదయస్కాంత వికిరణాలు అనెవి విద్యుదయస్కాంతం తో ముడిపడి ఉందని మైకేల్ ఫెరడే అనే శాస్త్రవేత్త తాను ధృవిత కాంతి ఒక పారదర్శకమైన పదార్థం గుండా పంపినపుడు అయస్కాంత క్షేత్రము యేర్పడుటను గమనించి తెలియజేశాడు. 1860 లో మాక్స్‌వెల్ అనే శాస్త్రవేత్త విద్యుదయస్కాంత క్షేత్రం యొక్క నాలుగు పాక్షిక అవకలన సమీకరణములు(మాక్స్‌వెల్ సమీకరణములు) అభివృద్ధి చేసిరి. అందులో రెందు సమీకరణములు అయస్కాంత క్షేత్రంలో తరంగాల ప్రవర్తన మరియు తరంగాల అవకాశం గూర్చి వివరిస్తాయి. ఈ సైద్ధాంతిక తరంగాల వేగంగూర్చి విశ్లేషించి మాక్స్ వెల్ అవి కాంగి వేగంతో ప్రయాణిస్తాయని ప్రతిపాదించాడు. ఈ సిద్ధాంతం ఆధారంగా కాంతి కూడా విద్యుదయస్కాంత తరంగమని నిరూపితమైంది.

మక్స్ వెల్ సమీకరణములు కాంతి వేగంతో ప్రయాణిస్తున్న వివిధ పౌనః పున్యాలు గల విద్యుదయస్కాంత తరంగాల ను వివరిస్తుంది. ఇది విద్యుదయస్కాంత వర్ణపటం యొక్క ఉనికిని తెలుసుకోవడానికి మొదటి ప్రతిపాదన అయినది.ఒక విధమైన సాధారణ విద్యుత్ వలయంలో కంపుస్తున్న ఆవేశాలు నుండి పరారుణ వికిరణాల కంటె తక్కువ పౌనః పున్యంగల తరంగాలు వెలువడుతున్నట్లు మాక్స్ వెల్ సైద్ధాంతీకరించాడు.మాక్స్ వెల్ సమీకరణములు నిరూపించుటకు మరియు ఆ విధమైన తక్కువ పౌనఃపున్యం గల వికిరణాలను తెలుసుకొనుటకు 1886 కీ హెన్రిచ్ హెర్ట్జ్ ప్రస్తుతం మనం పిలువబడుచున్న రేడియో తరంగాలు ను తయారుచేసే మరియు గుర్తించే పరికరాన్ని కనుగొన్నాడు. హెర్ట్జ్ ఈ తరంగాలు కాంతి వేగంతో ప్రయాణిస్తాయని నిరూపించాడు. ఈ క్రొత్త వికిరణాలు వివిధ బంధాకాలతో కూడిన యానకంలో కాంతి వలె పరావర్తనం మరియు వక్రీభవనం చెంతుతున్నట్లు విశదీకరించాడు. ఉదాహరణకు చెట్ల రెసిన్ తో చేయబడిన ఒక కటకాన్ని ఉపయోగించి అందుగుండా విద్యుదయస్కాంత వికిరణాలను పంప గలిగాడు. తర్వాత ప్రయోగంలో హెర్ట్జ్ మైక్రో తరంగాల యొక్క ఉత్పత్తి మరియు వాటి లక్షణాలను తెలుసుకోగలిగాడు. ఈ క్రొత్త తగంగాలు టెలిగ్రాఫ్ మరియు రేడియో ఆవిష్కరణలు చేయటంలో మార్గం సుగమం చేశాయి.

1895 లో విల్హేల్మ్ కన్రాడ్ రాంట్జెన్ అధిక విద్యుత్ వోల్టేజీని ఉత్సర్గనాళం గుండా పంపే ప్రయోగంలో క్రొత్త రకమైన వికిరణాలు ఉద్గారమవ్వటాన్ని గుర్తించాడు. ఈ కిరణాలకు X-కిరణాలు అని నామకరణం చేశాడు. ఈ కిరణాలు పనిషి శరీరం గుండా ప్రయాణిస్తాయి మరియు సాంద్రతర యానకం అయిన ఎముకల గుండా ప్రయాణించవు. అందువల్ల ఈ కిరణాలను వైద్య రంగంలో రేడియో గ్రఫీ (రోగమును గుర్తించుట) నందు ఉపయోగిస్తారు.

విద్యుదయస్కాంత వర్ణపటం లో చివరి స్థానంలో గామా కిరణాలు చేరినవి. వీటిని 1900 లో పాల్ విల్లార్డ్ అనే శాస్త్రవేత్త రేడియో ధార్మిక పదార్థం అయిన రేడియం నుండి ఉద్గారమైన వికిరణాలను అధ్యయనం చేయునపుడు ఆల్ఫా,బీటా కిరణాలతో పాటు వెలువడే ఒక క్రొత్త రకమైన వికిరణాలను గుర్తించాడు.అవి ఆల్ఫా, బీటా కిరణాల కంటె చొచ్చుకుపోయే సామర్థ్యం అధికంగా కలిగియున్నాయనై గుర్తించాడు. 1910 లో బ్రిటిష్ భౌతిక శాస్త్రవేత్త అయిన విల్లియం హెన్రీ బ్రాగ్ గామా కిరణములు విద్యుదయస్కాంత తరంగాలను నిర్దారించాడు.అవి కణాలు కాదని వికిరణాలని తెలియజేశాడు. 1914 లో ఎర్నెస్ట్ రూథర్‌ఫోర్డ్(1903 లో ఆల్ఫా,బీటా కిరణాలకు విభిన్నంగా గల ఈ కిరణాలకు గామా కిరణాలని నామకరణం చేశాడు) మరియు ఎడ్వర్డ్ ఆండ్రాడ్ వాటి తరంగదైర్ఘ్యం విలువను కొలిచి ఈ వికిరణాలు X-కిరణాలు కంటె తక్కువ తరంగ దైర్ఘ్యం కలిగి ఎక్కువ పౌనః పున్యం కలిగి యున్నాయని నిరూపించారు.

విద్యుదయస్కాంత వర్ణపట వ్యాప్తి[మార్చు]

విద్యుదయస్కాంత తరంగాలు ఈ క్రింది మూడు భౌతిక లక్షణాల ఆధారంగా వివరింపబడతాయి. అవి పౌనః పున్యము f, తరంగదైర్ఘ్యం λ లేదా ఫోటాన్ శక్తి E.

వీటి పౌనః పున్యాల వ్యాప్తి ఖగోళ శాస్త్ర ములో అతిపెద్ద పరిమాణము అయిన 2.4×1023 Hz (1 GeV గామా కిరణాలు) నుండి ప్లాస్మా పౌనఃపున్యం వరకు (~1 kHz).

తరంగ దైర్ఘ్యం అనునది తరంగ పౌనఃపున్యము నకు విలోమాను పాతంలో ఉంటుంది.[3] అందువల్ల గామా కిరణాలు పరమాణు పరిమాణం లో అతిచిన్న భాగం అంత తక్కువ తరంగ దైర్ఘ్యం కలిగియున్నాయి. ఫోటాన్ శక్తి తరంగ పౌనఃపున్యం నకు అనులోమాను పాతంలో ఉంటుంది. అందువల్ల గామా కిరణం నకు అధిక శక్తి కలిగి ఉంటుంది.(సుమారు బిలియన్ ఎలక్ట్రాన్ వోల్టులు) అదేవిధంగా రేడియో తరంగాలు యొక్క ఫోటాన్ శక్తి చాలా తక్కువగా ఉంటుంది.(సుమారుఫెమ్టో ఎలక్ట్రాన్ వోల్టులు)

పై సంబంధాలు ఈ క్రింది సమీకరణాల తో వివరించవచ్చు.
f = \frac{c}{\lambda}, \quad\text{or}\quad f = \frac{E}{h}, \quad\text{or}\quad E=\frac{hc}{\lambda},

where:

పదార్థము యొక్క ప్రసార యానకంలో విద్యుదయస్కాంత తరంగాలు వ్యవస్థితమైతే వాటి యొక్క తరంగ దైర్ఘ్యాలు తగ్గుతాయి. యే యానకం గుండానైనా ప్రయాణిస్తున్న విద్యుదయస్కాంత తరంగాలు సాధారణంగా "శూన్య తరంగ దైర్ఘ్యం" తో సూచించబడతాయి.అయినప్పటికి ఎల్లపుడూ అలా ఉండవు.

సాధారణంగా విద్యుదయస్కాంత వికిరణాలు వాటి తరంగదైర్ఘ్యం ప్రకారం రేడియో తరంగాలు, మైక్రో తరంగాలు, టెరా హెర్ట్జ్ వికిరణాలు, పరారుణ వికిరణాలు, దృగ్గోచర వర్ణపటం(దృశ్య కాంతి) ,అతినీలలోహిత కిరణాలు, X-కిరణాలు మరియు గామా కిరణాలు గా వర్గీకరింప బడతాయి. విద్యుదయస్కాంత వికిరణాల ప్రవర్తన వాటి తరంగ దైర్ఘ్యం వాటి తరంగ దైర్ఘ్యం పై ఆధారపడి ఉండును. విద్యుదయస్కాంత వికిరణము ఒక ఏక పరమాణువు మరియు అణువు వంతి వాటితో కలిసినపుడు దాని ప్రవర్తన అణువులో కి పోతున్న క్వాంటం(ఫోటాన్) యొక్క శక్తి పరిమాణముపై ఆధారపడి ఉంటుంది.

వర్ణపట శాస్త్రం 400 nm నుండి 700 nm.వరకు తరంగ దైర్ఘ్యం గల దృగ్గోచర వర్ణపటం చుట్టూ విశాలంగా ఆవరించిన విద్యుదయస్కాంత వర్ణపటాన్ని గుర్తిస్తుంది.సాధారణ ప్రయోగ శాలలో గల వర్ణపట లేఖిని 2 nm నుండి 2500 nm.వరకు తరంగ దైర్ఘ్య అవధి వరుకు గల వివిధ వస్తువుల,వాయువుల వంటి వాటి సమాచారాన్ని గుర్తిస్తుంది. ఈ వర్ణపట లేఖినులను ఖగోళ భౌతిక శాస్త్రం లో ఉపయోగిస్తారు. ఉదాహరణకు అనేక హైడ్రోజన్ పరమాణువులు కలిసి 21.12 cm. తరంగ దైర్ఘ్యం,30 Hz పౌనః పున్యం గల రేడియో తరంగం యొక్క ఫోటాన్ ను ఉద్గారం చేస్తాయి. అవి స్టెల్లార్ నెబ్యులా గూర్చి అధ్యయనం చేయుటకు ఉపయోగపడతాయి.[8] మరియు 2.9×1027 Hz పౌనఃపున్యము కలిగిన తరంగాలు ఖగోళ భౌతిక శాస్త్రంలో వివిధ వనరులుగా ఉపయోగపడతాయి. [9]

విద్యుదయస్కాంత కిరణాలు యేర్పడు కారణాలు[మార్చు]

విద్యుదయస్కాంత వికిరణాలు, విద్యుదయస్కాంత వర్ణపటంలో వివిధ రకాలను సూచిస్తాయి. వివిధ రకాల కిరణాల సముదాయం లో వివిధ రకాల వికిరణాలను వాటి తరంగ దైర్ఘ్య అవథిని బట్టి నిర్ధారించవచ్చును. అన్ని రకాల వికిరణములు గలిగిన వర్ణపటం అవిచ్ఛిన్నంగా ఉంటుంది.

వర్ణపటం లో ప్రాంతం పదార్థం తో ముఖ్య సంబంధములు
రేడియో తరంగాలు పదార్థంలో ఆవేశ వాహకాల కంపనాల (ప్లాస్మా కంపనాలు) సముదాయము. ఉదా: ఆంటెన్నా లో ఎలక్ట్రాన్ల కంపనాలు.
మైక్రో తరంగాలు పరారుణ వికిరణాలకు దూరంగా గలవి. ప్లాస్మా కంపనాలు, అణువుల భ్రమణం
పరారుణ వికిరణాలకు దగ్గరగా అణువుల కంపనాలు, ప్లాస్మా కంపనాలు (లోహాలలో మాత్రమే)
దృగ్గోచర కాంతి అణువులలో గల ఎలక్ట్రాన్ల ఉత్తేజం (మానవ కంటిలోని రెటీనా లో కనుగొనబడిన పిగ్మెంట్ అణువుల తో), ప్లాస్మా కంపనాలు (లోహాలలో మాత్రమే)
అతినీలలోహిత కిరణాలు అణువుల మరియు వేలన్సీ ఎలక్ట్రాన్ల ఉత్తేజం, కాంతి విద్యుత్ ఫలితంగా ఎలక్ట్రాన్ల మార్పిడి.
X-కిరణాలు పరమాణువులో కోర్ ఎలక్ట్రాన్ల ఉత్తెజం, కాంప్టన్ పరిక్షేపణ(తాక్కువ పరమాణు సంఖ్యలు)
గామా కిరణాలు భార మూలకాల కోర్ ఎలక్ట్రాన్ల ఉత్తేజం, కాంప్టన్ పరిక్షేపణ(అన్ని పరమాణు సంఖ్యలు), పరమాణు కేంద్రకాల ఉత్తెజం,
అధిక శక్తి గల గామా కిరణాలు కేంద్రక కణముల సృష్టి, అధిక శక్తి గల కణాలు మరియు ఉపకణాలు పదార్థ్ంలోనికి పోవుటవలన అధిక శక్తిగల ఏక ఫోటాన్లు తయారగుట.

వికిరణముల రకాలు[మార్చు]

విద్యుదయస్కాంత వర్ణపటం

అవథులు[మార్చు]

విద్యుదయస్కాంత వికిరణాల యొక్క అవథులు ఈ దిగువనీయబడినవి. కాని వివిధ వికిరణాల ఖచ్చిత అవధిని నిర్వచించబడలేదు. ఇంద్రధనుస్సు(దృగ్గోచర కాంతి యొక్క వర్ణపటం) లో రంగుల లో గల పట్టీలు ఒకదానికొకటి కలిసి యున్నట్లు యివికూడా వివిధ హద్దులతో వేరుచేసేటట్లు ఉండవు. ప్రతి వికిరణముయొక్క పౌనః పున్యము, తరంగ దైర్ఘ్యం రెండు ప్రాంతాల వర్ణపటం యొక్క ధర్మాలు కలిసిపోయినట్లుగా ఉంటాయి. ఉదాహరణకు, ఎరుపు కాంతి పరరుణ వికిరణాలతో కలిసి ఉత్తేజపడి కొన్ని రసాయన బందాలకు శక్తిని అందిస్తుంది. మరియు కిరనజన్య సంయోగ క్రియలో రసాయన క్రియలకు శక్తిని అందిస్తుంది. దృగ్గోచర వ్యవస్థ పనిచేయుటకు ఉపయోగపడుతుంది.

వర్ణపట అవధులు[మార్చు]

విద్యుదయస్కాంత వికిరణాలు ఈ క్రిందివిధంగా వర్గీకరింపబడినవి.[3]

  1. గామా వికిరణాలు
  2. X-కిరణ వికిరణాలు
  3. అతినీలలోహిత వికిరణాలు
  4. దృగ్గోచర వికిరణాలు
  5. పరారుణ వికిరణాలు
  6. టెరా హెర్ట్జ్ వికిరణాలు
  7. మైక్రో తరంగ వికిరణాలు
  8. రెడియో తరంగాలు

ఈ వర్గీకరణ వాటి తరంగ దైర్ఘ్య ఆరోహణ క్రమంలో ఉన్నది.ఈ ధర్మం ప్రకారం వివిధ వికిరణాలు వర్గీకరింపబడతాయి.[3] ఒక విధంగా ఈ వర్గీకరణ ఖచ్చితమైనదైనా, వాస్తవంగా ప్రక్క,ప్రక్క వికిరణాల మధ్య ఆధ్యారోపణం జరుగుతుంది.

X-కిరణాల మరియు గామా కిరణాల మధ్య విభజన వాటి జనకం పై ఆధారపడి ఉంటుంది.: కేంద్రక విఘటనం నుండి లేదా ఇతర కెంద్రక మరియు ఉప కేంద్రక కణాల విధానము లో ఉత్పత్తి అయిన ఫోటాన్లు ఎలక్ట్రాన్ల పరివర్తనలో అధిక శక్తిగల అంతర పరమాణు ఎలక్ట్రాన్ల మూలముగా ఎల్లపుడూ గామా కిరణములతో పాటు X-కిరణాలను కూడా ఉత్పత్తి చేస్తాయి.[10][11][12]

సాధారణంగా కేంద్రక పరివర్తనలు ఎలక్ట్రాన్ల పరివర్తనల కన్నా చాలా శక్తి వంతంగా ఉంటాయి. అందువల్ల గామా కిరణాలు X- కిరణాల కన్నా శక్తివంతమైనవి. కాని పరిమితులకు మాత్రమే. ఎలక్ట్రాన్ల పరివర్తన ను విశ్లేషించినపుడు అస్థిర మీసాన్(ఎలక్ట్రాన్ కన్నా 200 రెట్లు ద్రవ్యరాశి గల కణం)లు కలిగిన పరమాణు పరివర్తన కూడా X-కిరణాలను ఉత్పత్తి చేస్తుందని తెలుస్తుంది.కానీ వాటి శక్తి హెచ్చుగా ఉండవచ్చు. 6 megaelectronvolts (0.96 pJ),[13]


whereas there are many (77 known to be less than 10 keV (1.6 fJ)) low-energy nuclear transitions (e.g., the 7.6 eV (1.22 aJ) nuclear transition of thorium-229), and, despite being one million-fold less energetic than some muonic X-rays, the emitted photons are still called gamma rays due to their nuclear origin.[14]

The convention that EM radiation that is known to come from the nucleus, is always called "gamma ray" radiation is the only convention that is universally respected, however. Many astronomical gamma ray sources (such as gamma ray bursts) are known to be too energetic (in both intensity and wavelength) to be of nuclear origin. Quite often, in high energy physics and in medical radiotherapy, very high energy EMR (in the >10 MeV region) which is of higher energy than any nuclear gamma ray, is not referred to as either X-ray or gamma-ray, but instead by the generic term of "high energy photons."

The region of the spectrum in which a particular observed electromagnetic radiation falls, is reference frame-dependent (due to the Doppler shift for light), so EM radiation that one observer would say is in one region of the spectrum could appear to an observer moving at a substantial fraction of the speed of light with respect to the first to be in another part of the spectrum. For example, consider the cosmic microwave background. It was produced, when matter and radiation decoupled, by the de-excitation of hydrogen atoms to the ground state. These photons were from Lyman series transitions, putting them in the ultraviolet (UV) part of the electromagnetic spectrum. Now this radiation has undergone enough cosmological red shift to put it into the microwave region of the spectrum for observers moving slowly (compared to the speed of light) with respect to the cosmos.

Radio frequency[మార్చు]

Radio waves generally are utilized by antennas of appropriate size (according to the principle of resonance), with wavelengths ranging from hundreds of meters to about one millimeter. They are used for transmission of data, via modulation. Television, mobile phones, wireless networking, and amateur radio all use radio waves. The use of the radio spectrum is regulated by many governments through frequency allocation.

Radio waves can be made to carry information by varying a combination of the amplitude, frequency, and phase of the wave within a frequency band. When EM radiation impinges upon a conductor, it couples to the conductor, travels along it, and induces an electric current on the surface of that conductor by exciting the electrons of the conducting material. This effect (the skin effect) is used in antennas.

Microwaves[మార్చు]

Plot of Earth's atmospheric transmittance (or opacity) to various wavelengths of electromagnetic radiation.

The super-high frequency (SHF) and extremely high frequency (EHF) of microwaves come after radio waves. Microwaves are waves that are typically short enough to employ tubular metal waveguides of reasonable diameter. Microwave energy is produced with klystron and magnetron tubes, and with solid state diodes such as Gunn and IMPATT devices. Microwaves are absorbed by molecules that have a dipole moment in liquids. In a microwave oven, this effect is used to heat food. Low-intensity microwave radiation is used in Wi-Fi, although this is at intensity levels unable to cause thermal heating.

Volumetric heating, as used by microwave ovens, transfers energy through the material electromagnetically, not as a thermal heat flux. The benefit of this is a more uniform heating and reduced heating time; microwaves can heat material in less than 1% of the time of conventional heating methods.

When active, the average microwave oven is powerful enough to cause interference at close range with poorly shielded electromagnetic fields such as those found in mobile medical devices and cheap consumer electronics.

Terahertz radiation[మార్చు]

Terahertz radiation is a region of the spectrum between far infrared and microwaves. Until recently, the range was rarely studied and few sources existed for microwave energy at the high end of the band (sub-millimeter waves or so-called terahertz waves), but applications such as imaging and communications are now appearing. Scientists are also looking to apply terahertz technology in the armed forces, where high-frequency waves might be directed at enemy troops to incapacitate their electronic equipment.[15]

Infrared radiation[మార్చు]

The infrared part of the electromagnetic spectrum covers the range from roughly 300 GHz (1 mm) to 400 THz (750 nm). It can be divided into three parts:[3]

  • Far-infrared, from 300 GHz (1 mm) to 30 THz (10 μm). The lower part of this range may also be called microwaves. This radiation is typically absorbed by so-called rotational modes in gas-phase molecules, by molecular motions in liquids, and by phonons in solids. The water in Earth's atmosphere absorbs so strongly in this range that it renders the atmosphere in effect opaque. However, there are certain wavelength ranges ("windows") within the opaque range that allow partial transmission, and can be used for astronomy. The wavelength range from approximately 200 μm up to a few mm is often referred to as "sub-millimeter" in astronomy, reserving far infrared for wavelengths below 200 μm.
  • Mid-infrared, from 30 to 120 THz (10 to 2.5 μm). Hot objects (black-body radiators) can radiate strongly in this range, and human skin at normal body temperature radiates strongly at the lower end of this region. This radiation is absorbed by molecular vibrations, where the different atoms in a molecule vibrate around their equilibrium positions. This range is sometimes called the fingerprint region, since the mid-infrared absorption spectrum of a compound is very specific for that compound.
  • Near-infrared, from 120 to 400 THz (2,500 to 750 nm). Physical processes that are relevant for this range are similar to those for visible light. The highest frequences in this region can be detected directly by some types of photographic film, and by many types of solid state image sensors for infrared photography and videography.

Visible radiation (light)[మార్చు]

Above infrared in frequency comes visible light. The Sun emits its peak power in the visible region, although integrating the entire emission power spectrum through all wavelengths shows that the Sun emits slightly more infrared than visible light.[16] By definition, visible light is the part of the EM spectrum to which the human eye is the most sensitive. Visible light (and near-infrared light) is typically absorbed and emitted by electrons in molecules and atoms that move from one energy level to another. This action allows the chemical mechanisms that underly human vision and plant photosynthesis. The light which excites the human visual system is a very small portion of the electromagnetic spectrum. A rainbow shows the optical (visible) part of the electromagnetic spectrum; infrared (if you could see it) would be located just beyond the red side of the rainbow with ultraviolet appearing just beyond the violet end.

Electromagnetic radiation with a wavelength between 380 nm and 760 nm (400-790 terahertz) is detected by the human eye and perceived as visible light. Other wavelengths, especially near infrared (longer than 760 nm) and ultraviolet (shorter than 380 nm) are also sometimes referred to as light, especially when the visibility to humans is not relevant. White light is a combination of lights of different wavelengths in the visible spectrum. Passing white light through a prism splits it up in to the several colors of light observed in the visible spectrum between 400 nm and 780 nm.

If radiation having a frequency in the visible region of the EM spectrum reflects off an object, say, a bowl of fruit, and then strikes our eyes, this results in our visual perception of the scene. Our brain's visual system processes the multitude of reflected frequencies into different shades and hues, and through this insufficiently-understood psychophysical phenomenon, most people perceive a bowl of fruit.

At most wavelengths, however, the information carried by electromagnetic radiation is not directly detected by human senses. Natural sources produce EM radiation across the spectrum, and technology can also manipulate a broad range of wavelengths. Optical fiber transmits light that, although not necessarily in the visible part of the spectrum (it is usually infrared), can carry information. The modulation is similar to that used with radio waves.

Ultraviolet light[మార్చు]

The amount of penetration of UV relative to altitude in Earth's ozone

Next in frequency comes ultraviolet (UV). The wavelength of UV rays is shorter than the violet end of the visible spectrum but longer than the X-ray.

UV in the very shortest range (next to X-rays) is capable even of ionizing atoms (see photoelectric effect), greatly changing their physical behavior.

At the middle range of UV, UV rays cannot ionize but can break chemical bonds, making molecules to be unusually reactive. Sunburn, for example, is caused by the disruptive effects of middle range UV radiation on skin cells, which is the main cause of skin cancer. UV rays in the middle range can irreparably damage the complex DNA molecules in the cells producing thymine dimers making it a very potent mutagen.

The Sun emits significant UV radiation (about 10% of its total power), including extremely short wavelength UV that could potentially destroy most life on land (ocean water would provide some protection for life there). However, most of the Sun's most-damaging UV wavelengths are absorbed by the atmosphere's oxygen, nitrogen, and ozone layer before they reach the surface. The higher ranges of UV (vacuum UV) are absorbed by nitrogen and, at longer wavelengths, by simple diatomic oxygen in the air. Most of the UV in this mid-range is blocked by the ozone layer, which absorbs strongly in the important 200–315 nm range, the lower part of which is too long to be absorbed by ordinary dioxygen in air. The range between 315 nm and visible light (called UV-A) is not blocked well by the atmosphere, but does not cause sunburn and does less biological damage. However, it is not harmless and does cause oxygen radicals, mutation and skin damage. See ultraviolet for more information.

X-rays[మార్చు]

After UV come X-rays, which, like the upper ranges of UV are also ionizing. However, due to their higher energies, X-rays can also interact with matter by means of the Compton effect. Hard X-rays have shorter wavelengths than soft X-rays. As they can pass through most substances with some absorption, X-rays can be used to 'see through' objects with thicknesses less than equivalent to a few meters of water. The most notable use in this category being diagnostic X-ray images in medicine (a process known as radiography). X-rays are useful as probes in high-energy physics. In astronomy Neutron stars and accretion disks around black holes emit X-rays, which enable us to study them. X-rays are also emitted by stars and are strongly emitted by some types of nebulae. However, X-ray telescopes must be placed outside the Earth's atmosphere to see astronomical X-rays, since the atmosphere of Earth has a density equivalent to about 10 meters of water, which is sufficient to block almost all astronomical X-rays (and also astronomical gamma rays—see below).

Gamma rays[మార్చు]

After hard X-rays come gamma rays, which were discovered by Paul Villard in 1900. These are the most energetic photons, having no defined lower limit to their wavelength. They are useful to astronomers in the study of high-energy objects or regions, although this must be done by orbiting gamma-ray telescopes orbiting outside the Earth's atmosphere. Gamma rays are useful to physicists thanks to their penetrative ability and their production from a number of radioisotopes. Gamma rays are also used for the irradiation of food and seed for sterilization, and in medicine they are occasionally used in radiation cancer therapy. More commonly, gamma rays are used in medicine in nuclear diagnostic imaging in nuclear medicine, with an example being PET scans. The wavelength of gamma rays can be measured with high accuracy by means of Compton scattering.

See also[మార్చు]

Script error

References[మార్చు]

  1. "Imagine the Universe! Dictionary". 
  2. U. A. Bakshi, A. P. Godse (2009). Basic Electronics Engineering. Technical Publications. pp. 8–10. ISBN 978-81-8431-580-6. Retrieved 2011-10-16. 
  3. 3.0 3.1 3.2 3.3 3.4 Mehta, Akul. "Introduction to the Electromagnetic Spectrum and Spectroscopy". Pharmaxchange.info. Retrieved 2011-11-08. 
  4. What is Light?UC Davis lecture slides
  5. Glenn Elert. "The Electromagnetic Spectrum, The Physics Hypertextbook". Hypertextbook.com. Retrieved 2010-10-16. 
  6. "Definition of frequency bands on". Vlf.it. Retrieved 2010-10-16. 
  7. మూస:CODATA2006
  8. J. J. Condon and S. M. Ransom. "Essential Radio Astronomy: Pulsar Properties". National Radio Astronomy Observatory. Retrieved 2008-01-05. 
  9. A. A. Abdo et al. (2007). "Discovery of TeV Gamma-Ray Emission from the Cygnus Region of the Galaxy". The Astrophysical Journal Letters 658: L33. arXiv:astro-ph/0611691. Bibcode:2007ApJ...658L..33A. doi:10.1086/513696. 
  10. Feynman, Richard; Robert Leighton, Matthew Sands (1963). The Feynman Lectures on Physics, Vol.1. USA: Addison-Wesley. pp. 2–5. ISBN 0-201-02116-1. 
  11. L'Annunziata, Michael; Mohammad Baradei (2003). Handbook of Radioactivity Analysis. Academic Press. p. 58. ISBN 0-12-436603-1. 
  12. Grupen, Claus; G. Cowan, S. D. Eidelman, T. Stroh (2005). Astroparticle Physics. Springer. p. 109. ISBN 3-540-25312-2. 
  13. Corrections to muonic X-rays and a possible proton halo slac-pub-0335 (1967)
  14. "Gamma-Rays". Hyperphysics.phy-astr.gsu.edu. Retrieved 2010-10-16. 
  15. "Advanced weapon systems using lethal Short-pulse terahertz radiation from high-intensity-laser-produced plasmas". India Daily. March 6, 2005. Retrieved 2010-09-27. 
  16. "Reference Solar Spectral Irradiance: Air Mass 1.5". Retrieved 2009-11-12. 

External links[మార్చు]

మూస:EMSpectrum