నైట్రోజన్ డయాక్సైడ్

వికీపీడియా నుండి
ఇక్కడికి గెంతు: మార్గసూచీ, వెతుకు
నైట్రోజన్ డయాక్సైడ్
Skeletal formula of nitrogen dioxide with some measurements
Spacefill model of nitrogen dioxide
Nitrogen dioxide at different temperatures
Nitrogen dioxide at -196 °C, 0 °C, 23 °C, 35 °C, and 50 °C
పేర్లు
IUPAC నామము
Nitrogen dioxide
ఇతర పేర్లు
Nitrogen(IV) oxide,[1] Deutoxide of nitrogen
గుర్తింపు విషయాలు
సి.ఎ.ఎస్. సంఖ్య [10102-44-0]
పబ్ కెమ్ 3032552
యూరోపియన్ కమిషన్ సంఖ్య 233-272-6
సి.హెచ్.ఇ.బి.ఐ CHEBI:33101
ఆర్.టి.ఇ.సి.యస్. సంఖ్య QW9800000
SMILES O=[N]=O
జి.మెలిన్ సూచిక 976
ధర్మములు
NO
2
మోలార్ ద్రవ్యరాశి 46.0055 g mol−1
స్వరూపం Vivid orange gas
వాసన Chlorine like
సాంద్రత 1.88 g dm−3[2]
ద్రవీభవన స్థానం −11.2 °C (11.8 °F; 261.9 K)
బాష్పీభవన స్థానం 21.2 °C (70.2 °F; 294.3 K)
Hydrolyses
ద్రావణీయత soluble in CCl
4
, nitric acid,[3] chloroform
బాష్ప పీడనం 98.80 kPa (at 20 °C)
వక్రీభవన గుణకం (nD) 1.449 (at 20 °C)
నిర్మాణం
C2v
Bent
ఉష్ణగతిక రసాయన శాస్త్రము
నిర్మాణము మారుటకు
కావాల్సిన ప్రామాణిక
ఎంథ్రఫీ
ΔfHo298
+34 kJ·mol−1[4]
ప్రామాణిక మోలార్
ఇంథ్రఫీ
So298
240 J·mol−1·K−1[4]
విశిష్టోష్ణ సామర్థ్యం, C 37.5 J/mol K
ప్రమాదాలు
ప్రధానమైన ప్రమాదాలు Poison, oxidizer
భద్రత సమాచార పత్రము ICSC 0930
జి.హెచ్.ఎస్.పటచిత్రాలు The flame-over-circle pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS) The gas-cylinder pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS) The corrosion pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS) The skull-and-crossbones pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS) The health hazard pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)
జి.హెచ్.ఎస్.సంకేత పదం Danger
జి.హెచ్.ఎస్.ప్రమాద ప్రకటనలు H270, H314, H330
GHS precautionary statements P220, P260, P280, P284, P305+351+338, P310
ఇ.యు.వర్గీకరణ {{{value}}}
R-పదబంధాలు R26, R34, R8
S-పదబంధాలు (S1/2), S9, S26, S28, S36/37/39, S45
Lethal dose or concentration (LD, LC):
30 ppm (guinea pig, 1 hr)
315 ppm (rabbit, 15 min)
68 ppm (rat, 4 hr)
138 ppm (rat, 30 min)
1000 ppm (mouse, 10 min)[6]
64 ppm (dog, 8 hr)
64 ppm (monkey, 8 hr)[6]
US health exposure limits (NIOSH):
PEL (Permissible)
C 5 ppm (9 mg/m3)[5]
REL (Recommended)
ST 1 ppm (1.8 mg/m3)[5]
IDLH (Immediate danger)
20 ppm[5]
సంబంధిత సమ్మేళనాలు
Related {{{label}}} {{{value}}}
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references
Nitrogen dioxide 2011 tropospheric column density.
Nitrogen dioxide (NO
2
) gas converts to the colorless gas డైనైట్రోజన్ టెట్రాక్సైడ్ (N
2
O
4
) at low temperatures, and converts back to NO
2
at higher temperatures. The bottles in this photograph contain equal amounts of gas at different temperatures.

నైట్రోజన్ డయాక్సైడ్ ఒక రసాయన సంయోగపదార్థం.ఒక నైట్రోజన్ పరమాణువు రెండు ఆక్సిజన్ పరమాణువుల సంయోగం వలన నైట్రోజన్ డయాక్సైడ్ ఏర్పడినది. ఈ సంయోగ పదార్థం యొక్క రసాయన సంకేతపదం NO2. పారిశ్రామికంగా నైట్రిక్ ఆమ్లం ఉత్పత్తి చెయ్యడంలో నైట్రోజన్ డయాక్సైడ్ మధ్యస్థాయి రసాయనంగా పనిచెయ్యును.ఎరుపు– బ్రౌన్ రంగుకలిగిన నైట్రోజన్ డయాక్సైడ్ విషవాయువు.నైట్రోజన్ డయాక్సైడ్ ప్రత్యేకమైన ఘాటైన వాసన కలిగిఉన్నది.నైట్రోజన్ డయాక్సైడ్ వాతావరణ కాలుష్య వాయువు కూడా[7].నైట్రోజన్ డయాక్సైడ్ ఒక పరామాగ్నటిక్ (para magnetic).C2v సాముహ అణుసౌష్టవాన్ని కల్గిఉన్నది.

అణు ధర్మాలు[మార్చు]

నైట్రోజన్ డయాక్సైడ్ యొక్క అణుభారం 46.0055 గ్రాములు/మోల్.అందువలన ఇది గాలి కన్న బరువైనది.గాలి అణుభారం 28.8గ్రాములు/మోల్.అణువు లోని నైట్రోజన్–ఆక్సిజన్ పరమాణువుల (N-O) మధ్య దూరం 119.7 pm.ఓజోన్ లా కాకుండా నైట్రోజన్ డయాక్సైడ్‌లోని నైట్రోజన్ పరమాణువు ఒంటరి ఎలక్ట్రాన్ కలిగిఉన్నందున, నైట్రోజన్ డయాక్సైడ్ యొక్క భూఎలక్ట్రాన్ స్థాయి ద్వంద్వస్థితిలో ఉండును. నైట్రోజన్ డయాక్సైడ్‌లోని అణువులో ఒంటరిఎలక్ట్రాన్[8] కారణంగా ఇది ఒకస్వేచ్ఛ రాడికల్‌గా వ్యవహరించును.అందువలన నైట్రోజన్ డయాక్సైడ్ సంకేత పదాన్ని •NO2.గా వ్రాస్తారు.

నైట్రోజన్ డయాక్సైడ్ ఉత్పత్తి-రసాయన చర్యలు[మార్చు]

గాలిలోని ఆక్సిజన్‌తో నైట్రిక్ ఆక్సైడు ఆక్సీకరణవలన నైట్రోజన్ డయాక్సైడ్ ఉత్పత్తి అగును[9] .

2NO + O2 → 2NO2

ప్రయోగశాలలో రెండంచెల విధానంలో నైట్రోజన్ డయాక్సైడును తయారు చెయ్యుదురు. మొదటనైట్రిక్ ఆమ్లాన్ని నిర్జలీకరణ (dehydration) చెయ్యడం వలన డైనైట్రోజన్ పెంటాక్సైడ్ఏర్పడును. తరువాత డైనైట్రోజన్ పెంటాక్సైడ్ యొక్క ఉష్ణవియోగం వలన నైట్రోజన్ డయాక్సైడ్ ఉత్పత్తి అగును.

2HNO3 → N2O5 + H2O
2N2O5 → 4NO2 + O2

కొన్ని లోహనైట్రేట్లు ఉష్ణ వియోగం/విఘటన చెందడంవలన కూడా నైట్రోజన్ డయాక్సైడ్ ఉత్పత్తిఅగును.

2Pb(NO3)2 → 2PbO + 4NO2 + O2

ప్రత్నామ్యాయంగా గాఢ నైట్రిక్ ఆమ్లాన్ని రాగివంటి లోహాలతో క్షయికరణ కావించడం వలన కూడా నైట్రోజన్ డయాక్సైడ్ ఏర్పడును.

4HNO3 +Cu → Cu(NO3)2 + 2NO2 +2 H2O

థెర్మల్ ధర్మాలు[మార్చు]

వాసన లేని డైనైట్రోజన్ టెట్రాక్సైడ్వాయువులో నైట్రోజన్ డయాక్సైడ్ సమతుల్యతస్థితిని (equilibrium) కల్గిఉండును.

2 NO
2
is in equilibrium with N
2
O
4

150°Cవద్ద నైట్రోజన్ డయాక్సైడ్ ఉష్ణ గ్రాహకచర్య (ΔH = 114 kJ/mol) ద్వారా ఆక్సిజన్ వాయువును విడుదల చెయ్యును.

2NO2 → 2NO +O2

ఆక్సీకరణ చర్య[మార్చు]

నైట్రోజన్ డయాక్సైడ్ అణువులో నైట్రోజన్-ఆక్సిజన్ పరమాణువుల మధ్యనున్న బంధం బలహీనమైనది కావడం వలన, నైట్రోజన్ డయాక్సైడ్ మంచి ఆక్సీకరణి.చాలా సంయోగపదార్థాలతో (హైడ్రో కార్బన్స్ వంటివి) తీవ్రంగా దహనం చెందును.

జల విశ్లేషణ[మార్చు]

నైట్రోజన్ డయాక్సైడును జలవిశ్లేషణ కావించిన నైట్రిక్ ఆమ్లం మరియు నైట్రస్ ఆమ్లం ఏర్పడును.ఈ చర్య, అష్టావాల్డ్ ప్రక్రియ (Ostwald process) లో వాణిజ్యపరంగా అమ్మోనియానుండి నైట్రిక్ ఆమ్లాన్ని తయారు చెయ్యు ప్రక్రియలో ఒకదశ.నైట్రిక్ ఆమ్లం నెమ్మదిగా నైట్రోజన్ డయాక్సైడుగా విఘటన చెందును[10].

4HNO3 → 4NO2 + 2H2O + O2

నైట్రేటులుగా మార్చుట[మార్చు]

నైట్రోజన్ డయాక్సైడును ఉపయోగించి లోహఆక్సైడులనుండి లోహనైట్రేటులను ఉత్పత్తి చెయ్యుదురు.

MO + 3NO2 → M(NO3)2 +NO

ఇక్కడ M లోహఆక్సైడులోని లోహాన్ని సూచిస్తున్నది.

అల్కైల్, మరియు లోహఅయోడైడుల నుండి నైట్రేటులు ఏర్పడును.

2 CH3I + 2NO2 → 2 CH3NO2 + I2
TiI4 + 4NO2 → Ti(NO2)4 + 2 I2

రక్షణ/భద్రత- నైట్రోజన్ డయాక్సైడు వాతావరణకాలుష్యం[మార్చు]

నైట్రోజన్ డయాక్సైడును శ్వాసించిన ప్రమాదం. ఈ సమ్మేళనం కలిగిఉన్న ఘట్రైన/కటువైన వాసనవలన, తక్కువ గాఢతలో ఉన్నను ఈ యువును గుర్తించవచ్చును. ఎర్రని పొగలు వెలువరించునైట్రిక్ ఆమ్లం 0 °C పైన నైట్రోజన్ డయాక్సైడును విడుదల చెయ్యును. ఈవిధంగా విడుదలయిన వాయుప్రభావానికి, తక్కువ మోతాదులో గురైన కొన్నిగంటల తరువాత కాని దాన్ని విషప్రభావం (ఉపిరి తిత్తులపై) కన్పిస్తుంది.

దీర్ఘకాలికముగా40–100 µg/m3 మోతాదుకు మించి నైట్రోజన్ డయాక్సైడ్ ప్రభావానికి లోనయిన శ్వాసకోశ నాళాలలో పనితీరు మందగించును.శ్వాసలో ఇబ్బందులు ఏర్పడును[11]. నైట్రోజన్ డయాక్సైడ్ ఎక్కువగా దహనక్రియలు జరుగునప్పుడు గాలిని ఆక్సీకరణిగా ఉపయోగించుకొని ఏర్పడును. అత్యధిక ఉష్ణోగ్రత వద్ద నోట్రోజన్ వాయువుతో ఆక్సిజన్ సంయోగం వలన నైట్రిక్ ఆక్సైడు ఏర్పడును.

O2 + N2 → 2 NO

తరువాత నైట్రిక్ ఆక్సైడు తిరిగి గాలితో ఆక్సీకరణ వలన నైట్రిక్ డయాక్సైడు ఏర్పడును. సాధారణ వాతావరణపరిస్థితులలో ఈ చర్య చాలా నెమ్మదిగా జరుగును.

2NO +O2 → 2NO2

ముఖ్యంగా అంతర్గత దహనయంత్రాలు /ఐ.సి.ఇంజన్లు[12] (ఆటోమొబైల్ వాహనఇంజన్లు, డీసెల్, పెట్రోల్ యంత్రాలు తదితరాలు), థెర్మల్ విద్యుత్తు ఉత్పత్తికేంద్రాలు/ఉష్ణ విద్యుతుజనకాల వలన అధికపరిమాణంలో నైట్రోజన్ డయాక్సైడు ఉత్పత్తిఅయ్యి వాతావరణంలో కలుస్తున్నది.ఈ రకపు దహనయంత్రాలలో ఇంధనం సంపూర్ణంగా దహనంచెందుటకు అధిక ప్రమాణంలో గాలిని దహనయంత్రాలకు పంపెదరు. అధిక ఉష్ణోగ్రతలో జరుగు దహనచర్య వలన గాలిలోని నైట్రోజన్, ఆక్సిజన్ సమ్మేళనం వలన నైట్రోజను ఆక్సైడులు ఉత్పత్తి అగుచున్నవి.ఇళ్ళలో వాడు కిరోసిన్ హీటరులు/స్టౌల వలన, మరియు గ్యాస్‌హీటరుల వలన కూడా నైట్రోజన్ ఆక్సైడులు ఏర్పడి, తరువాత నైట్రోజన్ డయాక్సైడులుగా పరివర్తన చెందుచున్నవి. బయలు వాతావరణంలో అణుపరీక్షలు (nuclear tests) జరుపుట వలన అధికప్రమాణంలో నైట్రోజన్ డయాక్సైడు ఉత్పత్తి అగుచున్నది పుట్టగొడుగు మేఘాలు (అణుపరీక్ష, లేదా పెద్ద ప్రేలుడు వలన ఏర్పడూ ధూళి మేఘాలు) ఎరుపురంగు కలిగి ఉండుటకు కారణం, ఈ అణుపరీక్షల వలన ఏర్పడిన నైట్రోజన్ డయాక్సైడు కారణం .

నైట్రోజన్ డయాక్సైడు అధికస్థాయిలో వాతావరణ కాలుష్య కారిణి, ప్రాంతాలలో నేలమట్టంలో నైట్రోజన్ డయాక్సైడు గాఢత 30 µg/m3.వాతావరణంలో ట్రోపోస్పెరిక్ ఓజోన్ ఏర్పడుటకు, ఇతరత్రా వాతావరణ రసాయనిక మార్పులకు నైట్రోజన్ డయాక్సైడు కొంత వరకు కారణం.

2015 లో కింగ్స్ కాలేజి, లండన్ వారు జరిపిన అధ్యయనంలో లండన్ నగరంలో 2010లో జరిగిన వేలాదిమరణాలకు మూలకారణం నైట్రోజన్ డయాక్సైడు వాయువు అని తెలిసినది, డీసెల్ ఇంజన్లనుండి ఉత్పత్తి అయ్యిన నైట్రోజన్ డయాక్సైడు వలన 5,900 మరణాలు సంభవించాయి[13]. 2005 లో కాలిఫోర్నియా విశ్వవిద్యాలయం, శాండిగో, జరిపిన అధ్యయనం ప్రకారం వాతావరణంలోని నైట్రోజన్ డయాక్సైడు నిష్పత్తికి, ఆకస్మికశిశుమరణ సిండ్రోమ్‌కు సంబంధం ఉన్నట్లు రుజువైనది[14]. విద్యుతు తుపానుల వలన కుడా నైట్రోజన్ డయాక్సైడు ఉత్పత్తి అగును.

మూలాలు[మార్చు]

  1. "nitrogen dioxide (CHEBI:33101)". Chemical Entities of Biological Interest (ChEBI). UK: European Bioinformatics Institute. 13 January 2008. Main. Retrieved 4 October 2011. 
  2. Haynes, William M., ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed.). CRC Press. p. 4.79. ISBN 1439855110. 
  3. Mendiara, S. N.; Sagedahl, A.; Perissinotti, L. J. (2001). "An electron paramagnetic resonance study of nitrogen dioxide dissolved in water, carbon tetrachloride and some organic compounds". Applied Magnetic Resonance. 20: 275. doi:10.1007/BF03162326. 
  4. 4.0 4.1 Zumdahl, Steven S. (2009). Chemical Principles 6th Ed. Houghton Mifflin Company. p. A22. ISBN 0-618-94690-X. 
  5. 5.0 5.1 5.2 NIOSH Pocket Guide to Chemical Hazards 0454
  6. 6.0 6.1 మూస:IDLH
  7. "Nitrogen dioxide". United States Environmental Protection Agency. 
  8. Chemistry of the Elements, N.N. Greenwood, A. Earnshaw, p.455
  9. Holleman, A. F.; Wiberg, E. "Inorganic Chemistry" Academic Press: San Diego, 2001. ISBN 0-12-352651-5.
  10. Thiemann, Michael; Scheibler, Erich and Wiegand, Karl Wilhelm (2005) "Nitric Acid, Nitrous Acid, and Nitrogen Oxides" in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim doi:10.1002/14356007.a17_293.
  11. Health Aspects of Air Pollution with Particulate Matter,Ozone and Nitrogen Dioxide (PDF). World Health Organization. 13–15 January 2003. p. 48. Retrieved 2011-11-19. 
  12. Son, Busoon; Wonho Yang; Patrick Breysse; Taewoong Chung; Youngshin Lee (March 2004). "Estimation of occupational and nonoccupational nitrogen dioxide exposure for Korean taxi drivers using a microenvironmental model". Environmental Research. 94 (3): 291–296. PMID 15016597. doi:10.1016/j.envres.2003.08.004. Retrieved 2008-02-25. 
  13. "Pollution Killing 9,500 Londoners Revives Mayor’s Heathrow Plea". Retrieved 2015-07-15. 
  14. "Sids Linked to Nitrogen Dioxide Pollution". Retrieved 2008-02-25.