αβγΔ
α / {\displaystyle \alpha /}
β / {\displaystyle \beta /} μ
i 2 < b r / >< m a t h > ( x + y ) 2 = x 2 + y 2 + 2 x y < b r / >< m a t h > i < b r / >< m a t h > ∑ i = 1 < b r / >< b r / >< m a t h > 1 d 2 {\displaystyle i^{2}<br/><math>(x+y)^{2}=x^{2}+y^{2}+2xy<br/><math>{\sqrt {i}}<br/><math>\sum _{i}=1<br/><br/><math>{\frac {1}{d^{2}}}}
<math> \frac{d^2y}{dx}+ω^2y=0