సున్న

వికీపీడియా నుండి
ఇక్కడికి గెంతు: మార్గసూచీ, వెతుకు

అంకెలు


0 | 1 | 2| 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 100 | 108 | 1000 | 1116

ఈ అంకె గురించి




సున్న ఒక అంకె మరియు ఇతర సంఖ్యలు (పది కంటే పెద్ద సంఖ్యలు, దశమ స్థానాలు) వ్రాయడములో ఉపయోగ పడే అక్షరము కూడా. సున్న అంటే శూన్యము అంటే ఏ విలువ లేకపోవడము. పూర్ణాంకాలు, సహజ సంఖ్యల సంకలనము లో, ఇతర బీజగణిత నిర్మాణాలలో సంకలన తత్సమం Identity గా ఉపయోగపడుతుంది. స్థానమును నిర్థారించడానికి కూడా సున్న ను వాడతారు. చారిత్రాత్మకంగా సున్న వాడుక లోకి వచ్చిన ఆఖరి అంకె. ఇంగ్లీషులో సున్నని అంకెగా ఉన్నపుడు 'నల్' అని కాని 'నిల్' అని , న్యూమరల్[తెలుగు పదము కావాలి] గ ఉన్నపుడు 'ఓ' అని, నాట్ అని అన్ని పరిస్థితులలో అనపడుతుంది.

సున్నాను కనుగొనడం గణితశాస్త్రం మొత్తం మీద విప్లవాత్మక మైన మార్పు తెచ్చింది. సున్నా అనే భావన బాబిలోనియా లాంటి పలు పురాతన నాగరికతలలో కనిపించినప్పటికీ, మనం ఇవాళ ఉపయోగిస్తున్న చిహ్నం ఆ తరువాతి కాలం వరకు కనుగొనబడినది.

మధ్య ఆసియా-భారత దేశాల మధ్య వర్తక వాణిజ్యా సంబంధాలు మనదేశానికి 'సున్నా' ను పరిచయం చేశాయని కొందరు నిపుణులు భావిస్తున్నారు. మాయాన్లు, బాబిలోనియన్లలాగనే భారతీయులు కూడా ఖాళీ స్థలాన్ని చూపడానికి '0' గుర్తును ఉపయోగిస్తున్నారు. అయినా క్రీస్తు శకం 9వ శతాబ్ధం నాటికి భారతీయులు 'సున్నానూ ఒక అంకెగా కూడా భావించడం ప్రారంభించారు. దీన్ని గణిత శాస్త్రంలో అతిపెద్ద ముందడుగుగా భావిస్తున్నారు. ఒకటికన్నా తక్కువ అంకె ఉందనీ ఒకటి నుంచీ దానిని తీసివేస్తే సమాధానం లభిస్తుందనీ భారతీయులు కనుగొన్నారు. అప్పటినుంచి భారతీయుల సంఖ్యా విధానం మనం ఇవాళ అంకెలను గణిస్తున్నట్టు 10 మీద ఆధారపడి ఉంటుంది.[1]

ఒక అంకెగా సున్న[మార్చు]

ధన 1 ముందు , ఋణ 1 తరువాత సున్న వస్తుంది. చాలా సంఖ్యా వ్యవస్థలలో 0, ఋణ సంఖ్యల కంటే ముందు తీసుకొనబడింది. హైరోగ్లఫిక్స్[తెలుగు పదము కావాలి] లో ధైర్యమైనది అని పిలువబడును. ఆధునిక వాడకంలో సున్న ను వృత్తాకారం, దీర్ఘ గోళాకారం లేదా గుండ్రటి భుజాలుగల చతురస్రాకారంలో రాస్తారు. "సున్న" గురించి = భార దేశంలో తొమ్మిదవ శతాబ్దంలో కర్ణాటక ప్రాంతంలో నివసించిన "మహావీరాచార్యుడు" గొప్ప గణిత శాస్త్రజ్ఞుడు. అతను సంస్కృతంలో వ్రాసిన "గణిత సార సంగ్రహం" అనే గ్రంధం చాల గొప్పది. ఆ గ్రంధాన్ని కావ్య రూపంలో పద్యాలతో 11వ శతాబ్దంలో "పావులూరి మల్లన " అనె కవి తెలుగులో వ్రాశాడు. ఆ గ్రంధంలో పావులూరి మల్లన "సున్న " గురించి చెప్పిన పద్యం:

"సున్నయు, సున్నయు బెంచిన సున్నయు తత్కృతి ఘనం సున్నయు వచ్చున్.
సున్నయు లెక్కయు బెంచిన సున్నయు తానమరి యుండు సుస్థిర రీతిన్.

భాస్కరాచార్యుడు .... సున్న[మార్చు]

సృష్టి లయ కాలాలలో అనంతుడైన అచ్యుతుని నుండి భూతే గణాన్ని తొలగించినా, లేదా కలిపినా అచ్యుతిని రూపంలో ఎటువంటి మార్పు ఉండదు. దీనికి ఉదాహరణగా సున్న గురించి ఈ విదంగా చెప్పాడు. ఒక సంఖ్యలో నుండి శూన్యాన్ని తీసివేసినా, దానికి కలిపినా దాని విలువలో మార్పు వుండదు. లేదా ఒక సంఖ్యను సున్న చేత గుణించినా, ఫలితం సున్న యే. సున్నను ఏ సంఖ్యతో భాగించినా సూన్య చ్ఛేదం (quotient zero) వస్తుంది. అలాగే ఏసంఖ్యనైనా సున్నతో భాగిస్తే అది 'ఖ ' హారం అనంతం (infinite ) అవుతుంది.

Unusual appearance of the digit zero on seven-segment displays
Usual appearance of the digit zero on seven-segment displays

మూలాలు[మార్చు]

బయటి లింకులు[మార్చు]

"http://te.wikipedia.org/w/index.php?title=సున్న&oldid=909975" నుండి వెలికితీశారు