సౌర ఘటం

వికీపీడియా నుండి
ఇక్కడికి గెంతు: మార్గసూచీ, వెతుకు

సౌర ఘటం అనేది కాంతివిపీడన ప్రభావం ద్వారా సూర్యకాంతి శక్తిని నేరుగా విద్యుత్తుగా మార్చే పరికరం చెప్పవచ్చు. కొన్నిసార్లు సౌర ఘటం అనే పదం ప్రత్యేకంగా సూర్య ఫలకాలు మరియు సూర్య ఘటాలు వంటి సూర్యకాంతి నుండి శక్తిని సంగ్రహించే పరికరాలు కోసం ప్రత్యేకించబడింది, అయితే కాంతివిపీడన ఘటం అనే పదాన్ని ఉపయోగిస్తున్న కాంతి వనరు తెలియనప్పుడు ఉపయోగిస్తారు. ఘటాల కూర్పును సౌర ఫలకాలు, సౌర వ్యవస్థలు లేదా కాంతివిపీడన శ్రేణుల తయారీలో ఉపయోగిస్తారు. కాంతివిపీడన శాస్త్రం అనేది అనిబద్ధ ఉపయోగం కోసం విద్యుత్తును ఉత్పత్తి చేయడంలో సౌర ఘటంల అనువర్తనాలకు సంబంధించిన సాంకేతిక రంగం మరియు పరిశోధనగా చెప్పవచ్చు. ఈ విధంగా ఉత్పత్తి చేసిన శక్తి సౌర శక్తి కి ఉదాహరణగా చెప్పవచ్చు (సౌర విద్యుత్తు అని కూడా పిలుస్తారు).


A solar cell made from a monocrystalline silicon wafer


విషయ సూచిక

సౌర ఘటం చరిత్ర[మార్చు]


"ఫోటోవాల్టాయిక్" అనే పదం గ్రీకు φῶς (phōs ) నుండి వచ్చింది, దీని అర్థం "కాంతి" మరియు ఇటాలియన్ భౌతిక శాస్త్రవేత్త వోల్టా పేరు నుండి వచ్చిన "వోల్టాయిక్" అని పదానికి అర్థం విద్యుత్తు, తర్వాత ఇతని పేరుతో విద్యుత్-ప్రేరిత బలం యొక్క యూనిట్‌ను వోల్ట్ అని పిలుస్తారు. "ఫోటో-వాల్టాయిక్" (కాంతివిపీడనం) అనే పదం 1849 నుండి ఆంగ్ల భాషలో ఉపయోగిస్తున్నారు.[1]


కాంతివిపీడన ప్రభావం అనేది 1839లో మొట్టమొదటిసారిగా ఫ్రెంచ్ భౌతిక శాస్త్రవేత్త A. E. బెక్యూరెల్ కనుగొన్నాడు. అయితే, ఇది 1883లో చార్లెస్ ఫ్రిట్స్‌చే మొట్టమొదటి సౌర ఘటాన్ని నిర్మించే వరకు ఉపయోగపడలేదు, ఈయన అర్థవాహకం సెలెనీయమ్‌ను బంగారంతో చేసిన సన్నని పొరచే పూత పోసి జంక్షన్‌లను నిర్మించాడు. ఈ పరికరం సుమారు 1% సామర్థ్యాన్ని మాత్రమే కలిగి ఉంది. చివరికి రష్యా భౌతిక శాస్త్రవేత్త అలెగ్జాండర్ స్టోలెటోవ్ బహిరంగ కాంతివిద్యుత్ ప్రభావం (1887లో హెన్రిచ్ హెర్ట్‌జ్ కనుగొన్నది) ఆధారంగా మొదటి సౌర ఘటాన్ని నిర్మించాడు. ఆల్బర్ట్ ఐన్‌స్టీన్ 1905లో కాంతివిద్యుత్ ప్రభావాన్ని వివరించాడు, ఈ వివరణకు అతను 1921లో భౌతిక శాస్త్రంలో నోబుల్ బహుమతిని అందుకున్నాడు. రుసెల్ వోల్ 1946లో ఆధునిక జంక్షన్ అర్థవాహక సౌర ఘటానికి ప్రత్యేక హక్కులను పొందాడు[2], దీనిని ట్రాన్సిస్టర్ కనుగొనేందుకు చేసిన ప్రయత్నాల్లో కనుగొన్నారు.


ఆధునిక యుగంలో సౌర శక్తి సాంకేతికత 1954లో బెల్ లేబొరేటర్సీ అర్థవాహకాలతో ప్రయోగాలు చేస్తున్నప్పుడు, యాదృచ్ఛికంగా నిర్దిష్ట మలినంతో పూయబడిన సిలికాన్ కాంతిచే ప్రభావితమవుతుందని గుర్తించినప్పుడు ప్రారంభమైంది. డార్యాల్ చాపిన్ బెల్ ల్యాబ్ సహచరులు కాల్విన్ ఫులెర్ మరియు గెరాల్డ్ పీయర్సన్‌లతో కలిసి సూర్యకాంతిని ఉపయోగపడే విద్యుత్ శక్తిగా మార్చే మొట్టమొదటి అనిబద్ధ పరికరాన్ని రూపొందించాడు.[3] దీని ఫలితంగా సుమారు 6% సూర్యకాంతి మార్పిడి సామర్థ్యంతో మొట్టమొదటి ఉపయోగకర సౌర ఘటం ఉత్పత్తి చేయడం సాధ్యమైంది. సౌర ఘటాన్ని మొట్టమొదటిగా ఏప్రిల్ 25, 1954లో ప్రదర్శించారు. సౌర ఫలకాలను ఉపయోగించే మొట్టమొదటి అంతరిక్ష నౌకగా US ఉపగ్రహం వాన్‌గార్డ్ 1గా చెప్పవచ్చు, ఇది హోఫ్మాన్ ఎలక్ట్రానిక్స్‌చే రూపొందించబడిన సౌర ఫలకాలతో మార్చి 1958లో ప్రయోగించబడింది. ఈ మైలురాయి ఆచరణీయ శక్తి సరఫరాను అందించే సౌర శక్తితో ఒక భూస్థిర కక్ష్య కమ్యూనికేషన్స్ ఉపగ్రహం తయారీ మరియు ప్రయోగంలో ఆసక్తి కలిగించింది. ఇది ఒక కీలకమైన అభివృద్ధిగా చెప్పవచ్చు, మెరుగుపర్చిన సౌర ఘటాలు కోసం పరిశోధనలో పలు ప్రభుత్వాలు నిధులను సమకూర్చాయి.


1970లో, మొట్టమొదటి అధిక సామర్థ్యం గల GaAs విషమ నిర్మాణ సౌర ఘటాలను USSRలో జోరెస్ ఆల్ఫెరోవ్ అతని బృందంచే రూపొందించాడు.[4][5] లోహ కర్బన రసాయన బాష్ప నిక్షేపణం (MOCVD లేదా OMCVD) ఉత్పత్తి యంత్రం ప్రారంభ 1980ల వరకు అభివృద్ధి చేయబడలేదు, సంస్థల సామర్థ్యాన్ని GaAs సౌర ఘటం తయారీకి మాత్రమే పరిమితం చేయబడింది. యునైటెడ్ స్టేట్స్‌లో, అప్లెయిడ్ సోలార్ ఎనర్జీ కార్పొరేషన్ (ASEC)చే 1988లో మొట్టమొదటి 17% సామర్థ్యం గల వాయు సాంద్రత శూన్యం (AM0) ఏక-జంక్షన్ GaAs సౌర ఘటాలు అధిక సంఖ్యలో తయారు చేయబడ్డాయి. "డ్యూయెల్ జంక్షన్" ఘటం GaAsలో GaAs అధస్తరం, జెర్మానియమ్‌లోని GaAs (Ge) అధస్తరానికి మారడం ఫలితంగా 1989లో ASECచే యాదృచ్ఛికంగా ఉత్పత్తి చేయబడింది. GaAs బఫర్ పొరను యాదృచ్ఛికంగా Geతో ఉత్తేజకం చేసిన కారణంగా అధిక బాహ్య విద్యుత్ వలయం వోల్టేజ్‌లు రూపొందించబడ్డాయి, ఇది Ge అధస్తరాన్ని మరొక ఘటంగా ఉపయోగించవచ్చని నిర్థారించింది. GaAs ఏక-జంక్షన్ ఘటాలు 19% AM0 ఉత్పత్తి సామర్థ్యంతో 1993లో అగ్ర స్థానంలో నిలిచాయి, ASEC సుమారు 20% ప్రారంభ సామర్థ్యంతో యునైటెడ్ స్టేట్స్‌లో అంతరిక్ష నౌకలో ఉపయోగించడానికి మొట్టమొదటి డ్యూయల్ జంక్షన్ ఘటాలను అభివృద్ధి చేసింది. ఈ ఘటాలు Geని రెండవ ఘటం వలె ఉపయోగించవు, కాని వేరొక ఉత్పేరకంతో మరొక GaAs-ఆధారిత ఘటాన్ని ఉపయోగిస్తాయి. చివరికి GaAs డ్యూయల్ జంక్షన్ ఘటాలు సుమారు 22% ఉత్పత్తి సామర్థ్యాలకు చేరుకున్నాయి. ట్రిపుల్ జంక్షన్ సౌర ఘటాలు 2000లో సుమారు 24% AM0 సామర్థ్యాలతో ప్రారంభం కాగా, 2002లో 26%, 2005లో 28% మరియు 2007లో ఒక 30% AM0 ఉత్పత్తి సామర్థ్యానికి చేరుకున్నాయి, ప్రస్తుతం యోగ్యతను సంపాదించుకున్నాయి.


ఇటీవల ప్రపంచ రికార్డును సొంతం చేసుకున్న బహు జంక్షన్ సౌర ఘటాలతో సామర్థ్యం గురించి రికార్డులు విభాగంలో చర్చించబడింది.


అధిక-సామర్థ్య ఘటాలు[మార్చు]

అధిక-సామర్థ్య సౌర ఘటాలు అనేవి సౌర ఘటం యొక్క ఒక వర్గంగా చెప్పవచ్చు, ఇవి సంఘటన సౌర శక్తి ప్రమాణానికి (watt/watt) అధిక విద్యుత్తును ఉత్పత్తి చేయగలవు. ఎక్కువ పరిశ్రమలు ఉత్పత్తి చేసే శక్తికి అయ్యే వ్యయం ఆధారంగా అధిక వ్యయ నియంత్రణ సాంకేతిక ప్రక్రియలపై దృష్టి కేంద్రీకరించాయి. కాంతివిపీడన విద్యుత్తు వ్యయాన్ని తగ్గించడానికి రెండు ప్రధాన వ్యూహాలు ఉన్నాయి, సామర్థ్యాన్ని పెంచాలి (ఉత్పత్తి అయ్యే శక్తి ప్రమాణానికి ఆక్రమించిన ప్రాంతంతో పలు వ్యయ స్థాయి వలన) మరియు ఉత్పత్తి అయ్యే శక్తి ప్రమాణానికి సౌర ఘటాల వ్యయాన్ని తగ్గించాలి. తదుపరి విధానం క్షీణించిన సామర్థ్యం యొక్క వ్యయంతో రావచ్చు, కనుక సౌర ఘటాల ధరను తగ్గించడం వలన కాంతివిపీడన విద్యుత్తు మొత్తం ధర తగ్గవలసిన అవసరం లేదు. కాంతివిపీడన సామర్థ్యాన్ని పెంచే విషయం విద్యా మరియు ఆర్థిక కోణాల్లో మంచి ఆసక్తిని సంతరించుకుంది. పలు ఊహాత్మక పరిస్థితుల్లో ధ్రువణ ప్రమాణాలను అమలు చేసిన తర్వాత పలు బృందాలు అధిక సామర్థ్యాలు సాధ్యమవుతాయని పత్రాలను ప్రచురించాయి. సామర్థ్యాన్ని వాస్తవిక పరిస్థితుల్లో లెక్కించాలి మరియు ప్రాథమిక పారామీటర్లుగా హ్రస్వ వలయం కరెంట్, బహిరంగ వలయ విపీడనాలను పరిశీలించాలి. [6]


కుడివైపున ఉన్న పటం పలు ద్రవ్యాలు మరియు సాంకేతికతలకు గుర్తించిన ఉత్తమ ప్రయోగశాల సామర్థ్యాలను ప్రదర్శిస్తుంది, సాధారణంగా దీనిని చాలా స్వల్ప స్థాయి అంటే ఒక స్క్వేర్ cm ఘటంలతో రూపొందించబడింది. వాణిజ్య సామర్థ్యాలను మరింత తక్కువగా ఉంటాయి.


Reported timeline of solar cell energy conversion efficiencies (from National Renewable Energy Laboratory (USA)


రికార్డ్ సామర్థ్యాలు[మార్చు]

బహు-జంక్షన్ సౌర ఘటాలు[మార్చు]

బహు జంక్షన్ సౌర ఘటాల రికార్డ్ విభేదించబడింది. డెలావేర్ విశ్వవిద్యాలయం, ప్రాన్‌హోఫెర్ ఇన్‌స్టిట్యూట్ ఫర్ సోలార్ ఎనర్జీ సిస్టమ్స్ మరియు NRELల ఆధ్వర్యంలోని అన్ని బృందాలు వరుసగా 42.8, 41.1 మరియు 40.8% ప్రపంచ రికార్డు టైటిల్‌ను సొంతం చేసుకున్నాయి.[7][8][9] NREL ఇతర ఆచరణలు ప్రమాణీకృత పరీక్షలు ఆధ్వర్యంలో నిర్వహించలేదని మరియు డెలావేర్ ప్రాజెక్ట్ సందర్భంలో పూర్తిగా కూర్చిన ఫలకం యొక్క ఊహాత్మక సామర్థ్యాలను మాత్రమే సూచించిందని వాదించింది.[10] NREL ధ్రువీకృత పరీక్షలను నిర్వహించగల ప్రపంచంలోని మూడు ప్రయోగశాలలు ఒకటి తమ సంస్థ అని వాదించింది అయితే ఆ మూడు ప్రయోగశాల్లో ఫ్రాన్‌హోఫర్ ఇన్‌స్టిట్యూట్ కూడా ఉంది.


పల్చని-పొర సౌర ఘటాలు[మార్చు]

2002లో, CdTe యొక్క పల్చని పొర ఆధారంగా నిర్మించిన సౌర ఘటాలచే అధిక సామర్థ్యం 18% నివేదించారు, ఇది షెఫీల్డ్ హాలామ్ విశ్వవిద్యాలయంలోని పరిశోధనలో నిరూపించబడింది అయితే ఇది బాహ్య పరీక్ష ప్రయోగశాలచే నిర్ధారించబడలేదు.


US జాతీయ పునరుద్ధరణ శక్తి పరిశోధన సంస్థ NREL కాపర్ ఇండియమ్ గాలియమ్ సెలెనైడ్ పల్చని పొరల ఆధారంగా తయారు చేసిన సౌర ఘటాలకు 19.9% సామర్థ్యాన్ని పొందారు, వీటిని CIGS (CIGS సౌర ఘటాలు కూడా చూడండి) అని కూడా పిలుస్తారు. ఈ CIGS పొరలు మూడు-దశల సహ-బాష్పీభవన విధానంలోని భౌతిక బాష్ప నిక్షేపణం ద్వారా అభివృద్ధి చేయబడ్డాయి. ఈ విధానంలో, మొదటి దశలో In, Ga మరియు Seల బాష్పీభవనం జరుగుతుంది; రెండవ దశలో ఇది Cu మరియు Se సహా-భాష్పీభవనం జరుగుతుంది మరియు చివరి దశలో మళ్లీ In, Ga మరియు Se బాష్పీభవనంతో ముగుస్తుంది.


పల్చని పొర సౌర వ్యవస్థలు దాదాపు 15% వాటాను కలిగి ఉంటే, మిగిలిన 85% వాటాను స్పటికాకార సిలికాన్ కలిగి ఉంది.[11] పల్చని పొర సౌర వ్యవస్థల వాణిజ్య ఉత్పత్తిలో అధిక శాతం 11% సామర్థ్యాన్ని కలిగి ఉన్న CdTeగా చెప్పవచ్చు.


స్పటికాకార సిలికాన్[మార్చు]

సిలికాన్‌లో అధిక సామర్థ్యాలను ఏకస్పటికాకార ఘటాల్లో సాధించారు. అత్యధిక వాణిజ్య సామర్థ్యం (22%) సన్‌పవర్‌చే ఉత్పత్తి చేయబడింది. న్యూ సౌత్ వేల్స్ విశ్వవిద్యాలయం ప్రయోగశాలలో ఏకస్పటికాకార సిలికాన్‌లో 25% సామర్థ్యాన్ని పొందాయి.[12] . స్ఫటికాకార సిలికాన్ పరికరాలు సైద్ధాంతిక అవధి సామర్థ్యం 29%కు చేరుకుంటుంది[13] మరియు 1-2 సంవత్సరాల కాల వ్యవధిలో తీర్చగల శక్తిని పొందారు.[14][15]


అనువర్తనాలు మరియు ఆచరణలు[మార్చు]

Polycrystaline photovoltaic cells laminated to backing material in a module
Polycrystalline photovoltaic cells

సౌర ఘటాలు తరచూ విద్యుత్తుచే అనుసంధానించబడతాయి మరియు ఒక వ్యవస్థ వలె చుట్టబడి ఉంటుంది. కాంతివిపీడన వ్యవస్థలు తరచూ ముందు (సూర్యుని ఎదురుగా) భాగంలో ఒక గాజు ఫలకాన్ని కలిగి ఉంటాయి, పంచభూతాలు (వర్షం, వడగల్లు, మొదలైనవి) నుండి అర్థవాహకం పల్చని పొరలను సంరక్షిస్తూ, దాని ద్వారా కాంత్రి ప్రసరణను అనుమతిస్తాయి. సాధారణంగా సౌర ఘటాలు వ్యవస్థల్లో సంకలిత విపీడనాన్ని రూపొందిస్తూ శ్రేణిలో అనుసంధానించబడతాయి. ఘటాలను సమాంతరంగా అనుసంధానించడం వలన అధిక కరెంట్ ఉత్పత్తి అవుతుంది. అవసరమయ్యే శృంగ DC విపీడనం మరియు కరెంట్‌తో ఒక అమరిక ను రూపొందించడానికి వ్యవస్థలు శ్రేణిలో లేదా సమాంతరంగా లేదా రెండు పద్ధతుల్లో పరస్పరం అనుసంధానించబడతాయి.


సౌర అమరిక నుండి విడుదలయ్యే శక్తిని వాట్‌లు లేదా కిలోవాట్స్‌లో సూచిస్తారు. అనువర్తనానికి అవసరమయ్యే ప్రత్యేకమైన శక్తిని గణించడానికి, వాట్-గంటలు, కిలోవాట్-గంటలు లేదా రోజుకి కిలోవాట్-గంటలు అనే ప్రమాణాల్లో తరచూ ఉపయోగిస్తారు. ఒక సాధారణ సూత్రం ఏమిటంటే సగటు శక్తి 20% అగ్ర శక్తికి సమానంగా ఉంటుంది, కనుక సౌర అమరిక విడుదల చేసే ప్రతి అగ్ర కిలోవాట్ రోజుకు 4.8 kWh శక్తి ఉత్పత్తికి అనురూప్యంగా ఉంటుంది (24 గంటలు x 1 kW x 20% = 4.8 kWh)


సౌర-ఉత్పాదక శక్తి వినియోగాన్ని సాధ్యం చేయడానికి, ఇన్వర్టెర్స్ ఉపయోగించి విద్యుత్తు తంత్రీ జాలకంలోకి తరచూ విద్యుత్తును ప్రసరింపచేయాలి (తంత్రీ జాలక-అనుసంధానిత కాంతివిపీడన వ్యవస్థలు); స్థిరమైన వ్యవస్థల్లో, తక్షణమే అవసరం లేని శక్తిని నిల్వ చేయడానికి బ్యాటరీలను ఉపయోగిస్తారు.


సూర్యకాంతితో స్వీయ-శక్తి కలిగి ఉండేలా చేయడానికి ఇతర విద్యుత్తు పరికరాల్లో కూడా సౌర ఘటాలను ఉపయోగించవచ్చు. ప్రస్తుతం వ్యక్తులు దైనందిన జీవితంలో ఉపయోగించడానికి సౌర ఘట ఫోన్ చార్జర్లు, సౌర ఘట బైక్ లైట్ మరియు సౌర ఘట క్యాంపింగ్ లైట్లు లభిస్తున్నాయి.


సిద్ధాంతం[మార్చు]

సరళ వివరణ[మార్చు]

  1. సూర్యకాంతిలోని పోటాన్లు సౌర ఫలకాన్ని తాకుతాయి మరియు సిలికాన్ వంటి అర్థవాహక వస్తువులచే శోషించబడతాయి.
  2. ఎలక్ట్రాన్లు (రుణాత్మకంగా చార్జ్ అయ్యినవి) వాటి పరమాణువుల నుండి విడుదల అయ్యి, విద్యుత్తును ఉత్పత్తి చేయడానికి వస్తువు ద్వారా వాటి ప్రసారాన్ని అనుమతిస్తుంది. సౌర ఘటాల ప్రత్యేక సంవిధానం కారణంగా, ఎలక్ట్రాన్లు ఒకేఒక్క దిశలో పయనించడానికి అనుమతించబడతాయి. రంధ్రాలు అని పిలిచే పరిపూరకమైన ధనాత్మక ఛార్జ్‌లు సృష్టించబడి, ఎలక్ట్రాన్లకు వ్యతిరేక దిశలో రవాణా చేయబడతాయి.
  3. సౌర ఘటాల ఒక శ్రేణి, సౌర శక్తిని ఉపయోగపడే ప్రత్యక్ష ప్రవాహ (DC) విద్యుత్తుగా మారుస్తాయి.


విద్యుదావేశ వాహకాల కాంతిఉత్పాదనం[మార్చు]

ఒక ఫోటాన్ ఒక సిలికాన్ భాగాన్ని తాకినప్పుడు, ఈ క్రింది మూడింటిలో ఒకటి జరుగుతుంది:


  1. ఫోటాన్ సిలికాన్ గుండా నేరుగా ప్రసారమవుతుంది — ఈ విధంగా (సాధారణంగా) స్వల్ప శక్తి ఫోటాన్లకు జరుగుతుంది,
  2. ఫోటోన్ ఉపరితలం నుండి ప్రతిబింబించబడుతుంది,
  3. ఫోటోన్ శక్తి స్థాయి సిలికాన్ పట్టీ పోచుకోలు విలువ కంటే ఎక్కువగా ఉంటే, ఫోటోన్ సిలికాన్‌చే శోషించబడుతుంది. ఇది ఒక ఎలక్ట్రాన్-రంధ్రం జతను మరియు కొన్నిసార్లు పట్టీ నిర్మాణంపై ఆధారపడి వేడిని ఉత్పత్తి చేస్తుంది.


ఒక ఫోటాన్ శోషించబడినప్పుడు, దాని శక్తి స్ఫటిక జాలికలోని ఎలక్ట్రాన్‌కు ఇవ్వబడుతుంది. సాధారణంగా ఈ ఎలక్ట్రాన్ క్షమ పట్టీలో ఉంటుంది మరియు ఇది సమీప పరమాణువుల మధ్య సమయోజనీయ బంధాల్లో బిగుతుగా బంధించబడతాయి. ఫోటోన్‌కు ఇచ్చిన శక్తితో అది ప్రసరణ పట్టీలోకి "ఉత్తేజపర్చబడుతుంది", ఇక్కడ దానికి అర్థవాహకంలో చుట్టూ తిరగడానికి స్వేచ్ఛ లభిస్తుంది. ముందుగా ఎలక్ట్రాన్ వదిలివేసిన ప్రసరణ బంధంలో ఇప్పుడు ఒక ఎలక్ట్రాన్ తక్కువగా కలిగి ఉంది - దీనిని రంధ్రంగా పిలుస్తారు. కోల్పోయిన ప్రసరణ బంధం ఉనికి సమీప పరమాణువుల్లోని బంధించబడిన ఎలక్ట్రాన్లు మరొక రంధ్రాన్ని విడిచి ఆ "రంధ్రం"లోకి ప్రవేశించడానికి అనుమతిస్తుంది మరియు ఈ విధంగా ఒక రంధ్రం ఒక జాలిక ద్వారా ప్రసారం కావచ్చు. కనుక, అర్థవాహకంలో శోషించబడిన ఫోటాన్లు సంచార ఎలక్ట్రాన్-రంధ్రం జతలను సృష్టిస్తాయని చెప్పవచ్చు.


ఒక క్షమ పట్టీ నుండి ఒక ప్రసరణ పట్టీలోకి ఒక ఎలక్ట్రాన్ ఉత్తేజపర్చడానికి ఒక ఫోటాన్ పట్టీ పోచుకోలు కంటే అధిక శక్తి కలిగి ఉండాలి. అయితే, సౌర పౌనఃపున్య వర్ణపటం ~6000 K వద్ద దాదాపు ఒక నల్లని కుడ్య వర్ణపుటం అవుతుంది మరియు భూమికి చేరుకున్న సౌర వికిరణం సిలికాన్ యొక్క పట్టీ పోచుకోలు కంటే అధిక శక్తులతో ఫోటాన్లను కలిగి ఉంటుంది. ఈ అధిక శక్తి ఫోటాన్లు సౌర ఘటంచే శోషించబడతాయి, కాని ఈ ఫోటాన్లు మరియు సిలికాన్ పట్టీ పోచుకోలు మధ్య శక్తిలోని తేడా ఉపయోగపడే విద్యుత్తు శక్తిగా కాకుండా వేడిగా (జాలక కంపనాల ద్వారా — ఫోనాన్స్ అని పిలుస్తారు) మారుతుంది.


విద్యుదావేశ వాహక వేర్పాటు[మార్చు]

సౌర ఘటంలో విద్యుదావేశ వాహక వేర్పాటుకు రెండు ప్రధాన పద్ధతులు ఉన్నాయి:


  1. వాహకాల కదలిక , పరికరం చుట్టూ ఏర్పడిన స్థిర విద్యుత్తు రంగంచే అమలు చేయబడుతుంది
  2. అధిక వాహక కేంద్రీకరణం మండలాల నుండి అల్ప వాహక కేంద్రీకరణం మండలాలకు వాహకాల విస్తరణం (విద్యుద్రసాయన సామర్థ్యం ఒక ప్రవణత అనుసరిస్తుంది).


విస్తృతంగా ఉపయోగించే p-n జంక్షన్ సౌర ఘటాల్లో, విద్యుదావేశ వాహక వేర్పాటులో కదలిక పద్ధతిగా ప్రాధాన్యతను ఇస్తారు. అయితే నాన్-p-n-జంక్షన్ సౌర ఘటాల్లో, ఒక సాధారణ స్థిర విద్యుత్తు రంగం ఉండదని నిర్ధారించబడింది మరియు ప్రాధాన్యత గల వేర్పాటును విద్యుదావేశ వాహక విస్తరణం చెప్పవచ్చు.[16]


p-n జంక్షన్[మార్చు]


బాగా జనాదరణ పొందిన సౌర ఘటాన్ని భారీ p-n జంక్షన్ వలె సిలికాన్ నుండి నిర్మించారు. సాధారణంగా చెప్పాలంటే, n-రకం సిలికాన్ పొరను p-రకం సిలికాన్ పొరతో నేరుగా సాన్నిహిత్యంలోకి తెచ్చినప్పుడు పరిస్థితిని ఊహించుకోండి. ఆచరణలో, సిలికాన్ p-n జంక్షన్ సౌర ఘటాలు ఈ విధంగా తయారు చేయబడవు, కాని దీనికి బదులుగా ఒక n-రకం ఉత్ప్రేరకాన్ని p-రకం పొర ఒక వైపున వ్యాపింపచేయడం వలన తయారు చేస్తారు (లేదా దీనికి వ్యతిరేకంగా కూడా చేయవచ్చు).


ఒక p-రకం సిలికాన్ భాగాన్ని ఒక n-రకం సిలికాన్ భాగానికి సన్నిహితంగా ఉంచినప్పుడు, అధిక ఎలక్ట్రాన్ గాఢత ప్రాంతం (జంక్షన్‌లో n-రకం నుండి) నుండి అల్ప ఎలక్ట్రాన్ గాఢత ప్రాంతంలోకి (జంక్షన్‌లో p-రకానికి) ఎలక్ట్రాన్ల వ్యాపనం జరుగుతుంది. p-n జంక్షన్ ద్వారా ఎలక్ట్రాన్ల వ్యాపనం జరిగినప్పుడు, అవి p-రకం భాగంలోని రంధ్రాలతో మళ్లీ చేరుతాయి. వాహకాల వ్యాపనం నిరవధికంగా సాగదు, అయితే జంక్షన్‌లో రెండు వైపులా విద్యుదావేశం రూపొందిన కారణంగా మరియు ఒక విద్యుత్తు క్షేత్రం ఏర్పడుతుంది. విద్యుత్తు క్షేత్రం కదలిక విద్యుదావేశం అని పిలిచే విద్యుదావేశ ప్రవాహాన్ని ప్రోత్సహించే ఒక డయోడ్‌ను రూపొందిస్తుంది, ఇది ఎలక్ట్రాన్ మరియు రంధ్రాల వ్యాపనాన్ని వ్యతిరేకించి, చివరికి సమం చేస్తుంది. జంక్షన్‌లో ఎలక్ట్రాన్లు మరియు రంధ్రాలు వ్యాపనం చేసిన ప్రాంతాన్ని తరుగు ప్రాంతంగా పిలుస్తారు, ఎందుకంటే ఇది ఎటువంటి చలనశీల విద్యుదావేశ వాహకాలను కలిగి ఉండదు. దీనిని వ్యవధాన విద్యుదావేశ ప్రాంతం గా కూడా పిలుస్తారు.


బాహ్య ప్రమాణానికి అనుసంధానం[మార్చు]

వోమిక్ లోహ-అర్థవాహక కటకాలు సౌర ఘటం యొక్క n-రకం మరియు p-రకం రెండు వైపులా ఏర్పాటు చేస్తారు మరియు విద్యుత్ప్రవాహనాళాలను బాహ్య ప్రమాణానికి అనుసంధానిస్తారు. n-రకం వైపు రూపొందించబడిన లేదా జంక్షన్‌చే "సేకరించబడిన" మరియు n-రకం వైపుకు పంపబడిన ఎలక్ట్రాన్లు తీగ ద్వారా ప్రయాణించవచ్చ, ప్రమాణానికి శక్తిని అందించవచ్చు మరియు అర్ధవాహక-లోహ బంధాన్ని కొనసాగించవచ్చు. ఇక్కడ, ఇవి సౌర ఘటంలోని p-రకం వైపు ఉన్న ఒక ఎలక్ట్రాన్-రంధ్రం జత వలె ఒక రంధ్రంకో లేదా n-రకం వైపు సృష్టించబడిన తర్వాత జంక్షన్ గుండా పంపబడిన ఒక రంధ్రంతో మళ్లీ కలవవచ్చు.


కొలవబడిన వోల్టేజ్ అల్పసంఖ్యాక వాహకాల పాక్షిక ఫెర్మీ స్థాయిలవో వ్యత్యాసాలకు సమానంగా ఉంటుంది అంటే p-రకం ప్రాంతంలో ఎలక్ట్రాన్లు మరియు n-రకం ప్రాంతంలో రంధ్రాలకు సమానంగా ఉంటుంది.


సౌర ఘటంలో సారూప్య వలయం[మార్చు]

The equivalent circuit of a solar cell
The schematic symbol of a solar cell


సౌర ఘటం యొక్క విద్యుత్తు ప్రవర్తనను అర్థం చేసుకోవడానికి, విద్యుత్తు పరంగా సమానమైన ఒక నమూనాను రూపొందించడం చాలా ఉపయోగపడుతుంది మరియు ప్రవర్తన బాగా తెలిసిన వివక్త విద్యుత్తు భాగాల ఆధారంగా రూపొందించబడాలి. ఒక ఉత్తమ సౌర ఘటం డయోడ్‌తో సమానంగా ఉన్న ప్రస్తుత వనరుచే నమూనా చేయబడి ఉండవచ్చు; ఆచరణలో, ఏ సౌర ఘటం ఉత్తమం కాదు, కనుక నమూనాకు ఒక ఉపమార్గ నిరోధం మరియు నిరోధ విభాగాల శ్రేణి జోడించబడ్డాయి.[17] ఫలితంగా ఏర్పడే ఒక సౌర ఘటం యొక్క సారూప్య వలయం ఎడమ వైపు చూపబడింది. అలాగే కుడి వైపున, వలయ రేఖాచిత్రాల్లో ఉపయోగించడానికి ఒక సౌర ఘటం యొక్క సాంప్రదాయిక పాత్రధారణ కూడా ఇవ్వబడింది.


ప్రత్యేకలక్షణ సమీకరణం[మార్చు]

సారూప్య వలయం నుండి, సౌర ఘటంచే ఉత్పత్తి చేయబడిన కరెంట్ డయోడ్ ద్వారా ప్రసారం అయిన ప్రవాహం మినహా, ఉపమార్గ నిరోధం ద్వారా ప్రవహించిన ప్రవాహం మినహాయించి ప్రస్తుత వనరు నుండి ఉత్పత్తి అయిన దానికి సమానంగా ఉంటుందని నిరూపించబడింది:[18][19]


I = I_{L} - I_{D} - I_{SH}


ఇక్కడ

  • I = ఫలిత కరెంట్ (ఆంపియర్లు)
  • IL = కాంతిఉత్పాదక కరెంట్ (ఆంపియర్లు)
  • ID = డయోడ్ కరెంట్ (ఆంపియర్లు)
  • ISH = ఉపమార్గ కరెంట్ (ఆంపియర్లు)


ఈ వస్తువుల్లో ద్వారా ప్రవహించిన కరెంట్ వాటిలో వోల్టెజ్ ద్వారా నిర్వహించబడుతుంది:


V_{j} = V + I R_{S}


ఇక్కడ

  • Vj = డయోడ్ మరియు రిసిస్టర్ రెండింటిలోని వోల్టేజ్ RSH (వోల్ట్‌లు)
  • V = అవుట్‌ఫుట్ టెర్మినల్‌లో వోల్టేజ్ (వోల్ట్‌లు)
  • I = ఫలిత కరెంట్ (ఆంపియర్లు)
  • RS = శ్రేణి నిరోధం (Ω)


షాక్లే డయోడ్ సమీకరణంచే, డయోడ్ ద్వారా మళ్లించబడిన కరెంట్:


I_{D} = I_{0} \left\{\exp\left[\frac{qV_{j}}{nkT}\right] - 1\right\}[20]


ఇక్కడ


ఓమ్ సూత్రం ప్రకారం, ఉపమార్గ నిరోధం ద్వారా మళ్లించబడిన కరెంట్:


I_{SH} = \frac{V_{j}}{R_{SH}}


ఇక్కడ

  • RSH = ఉపమార్గ నిరోధం (Ω)


వీటిని మొదటి సమీకరణంలో ప్రతిక్షేపించడం వలన సౌర ఘటం యొక్క లక్షణాల సమీకరణం ఉత్పాదించబడుతుంది, ఇది సౌర ఘటం పారామీటర్లను ఫలిత కరెంట్ మరియు వోల్టేజ్‌లకు సంబంధాన్ని తెలుపుతుంది:


I = I_{L} - I_{0} \left\{\exp\left[\frac{q(V + I R_{S})}{nkT}\right] - 1\right\} - \frac{V + I R_{S}}{R_{SH}}


ఒక ప్రత్యామ్నాయ ఉత్పాదన ఒకే విధంగా కనిపించే ఒక సమీకరణను ఉత్పత్తి చేస్తుంది, కాని V ఎడమ చేతి వైపు ఉంటుంది. రెండు ప్రత్యామ్నాయాలను గుర్తులుగా చెప్పవచ్చు; అంటే అవి సరియైన అదే ఫలితాలకు కారణమవుతాయి.


సిద్ధాంతం ప్రకారం, ఇవ్వబడిన ఒక నిర్దిష్ట నిర్వాహణ వోల్టేజ్ V కు, ఆ వోల్టేజ్ వద్ద నిర్వాహణ కరెంట్ I ను కనుగొనడానికి సమీకరణం పరిష్కరించబడుతుంది. అయితే, సమీకరణం ఒక పారమార్థిక విధిలో రెండు వైపుల I ని తీసుకుంటుంది కనుక ఆ సమీకరణం సాధారణ విశ్లేషణాత్మక పరిష్కారాన్ని కలిగి ఉండదు. అయితే, ఒక పరిష్కారం లేకుండా కూడా, ఇది భౌతికంగా వివరణాత్మకంగా ఉంటుంది. ఇంకా, దీనిని సంఖ్యాశాస్త్ర పద్ధతులను ఉపయోగించి సులభంగా పరిష్కరించవచ్చు. (సమీకరణానికి సాధారణ విశ్లేషాత్మక పరిష్కారం లాంబెర్ట్స్ W ఫంక్షన్‌ను ఉపయోగించి సాధ్యమవుతుంది, కాని సాధారణంగా లాంబెర్ట్స్ Wనే సంఖ్యా శాస్త్ర పరంగా పరిష్కరించబడాలి, ఇది సాంకేతికత.)


పారామీటర్లు I0, n, RS మరియు RSH లను నేరుగా లెక్కించడం సాధ్యం కాదు, లక్షణాత్మక సమీకరణం యొక్క సాధారణ అనువర్తనంగా విరళ తిరోగమనం చెప్పవచ్చు, ఇది సౌర ఘటం ప్రవర్తనలో వాటి మిశ్రమ ప్రభావంపై ఆధారంగా ఈ పారామీటర్ల విలువలను వెలికితీస్తుంది.


బాహ్య-వలయ వోల్టేజ్ మరియు సూక్ష్మ-వలయ కరెంట్[మార్చు]

ఒక ఘటం బాహ్య వలయంలో అమలు అవుతుంటే, I = 0 మరియు ఫలిత టెర్మినల్స్‌లో వోల్టేజ్‌ను బాహ్య-వలయ వోల్టేజ్‌ గా పేర్కొంటారు. విశ్లేషణాత్మక సమీకరణం యొక్క తుది ఫలితాన్ని విస్మరించగల ఉపమార్గ నిరోధం ఎక్కువగా ఉన్నట్లు ఊహిస్తే, బాహ్య-వలయ వోల్టేజ్ VOC అనేది:


V_{OC} \approx \frac{kT}{q} \ln \left(\frac{I_L}{I_0} + 1\right)


అలాగే, ఒక ఘటం సూక్ష్మ వలయంలో అమలు అవుతున్నప్పుడు, V = 0 మరియు టెర్మినల్స్ ద్వారా ప్రవహించే ప్రస్తుత I ని సూక్ష్మ-వయ కరెంట్‌ గా పేర్కొంటారు. ఇది అధిక-నాణ్యత సౌర ఘటానికి (స్వల్ప RS మరియు I0 మరియు అధిక RSH ), సూక్ష్మ-వలయ కరెంట్ అనేది:


I_{SC} \approx I_L


భౌతిక పరిమాణం ప్రభావం[మార్చు]

I0 , RS మరియు RSH ల విలువలు సౌర ఘటం యొక్క భౌతిక పరిమాణంపై ఆధారపడి ఉంటాయి. సమానమైన ఘటాలను పోల్చడంలో, సిద్ధాంతం ప్రకారం, మరొకదాని కంటే ఉపరితల ప్రాంతం రెట్టింపు గల ఘటం రెండు రెట్లు I0 ను కలిగి ఉంటుంది, ఎందుకంటే కరెంట్ వెలుపలికి పోవడానికి ఇది రెండు రెట్లు అధిక జంక్షన్ ప్రాంతాన్ని కలిగి ఉంటుంది. ఇది RS మరియు RSH ల్లో సగం విలువను మాత్రమే కలిగి ఉంటుంది ఎందుకంటే ఇది కరెంట్ ప్రవహించడానికి అడ్డుకోత ప్రాంతాన్ని రెండు రెట్లు కలిగి ఉంటుంది. ఈ కారణంగా, విశేషణాత్మక సమీకరణం తరచూ ఘటం పరిమాణానికి ఉత్పత్తి అయ్యే కరెంట్ సాంద్రత లేదా కరెంట్ ప్రకారం తెలుపుతారు:


J = J_{L} - J_{0} \left\{\exp\left[\frac{q(V + J r_{S})}{nkT}\right] - 1\right\} - \frac{V + J r_{S}}{r_{SH}}


ఇక్కడ

  • J = కరెంట్ సాంద్రత (ఆంపియర్స్/cm2)
  • JL = కాంతిఉత్పాదక కరెంట్ సాంద్రత (ఆంపీయర్స్/cm2)
  • J0 = తిరోగమన గరిష్ట కరెంట్ సాంద్రత (ఆంపియర్స్/cm2)
  • rS = నిర్దిష్ట శ్రేణి నిరోధం (Ω-cm2)
  • rSH = నిర్దిష్ట ఉపమార్గ నిరోధం (Ω-cm2)


ఈ సూత్రం పలు ప్రయోజనాలను కలిగి ఉంది. ఒకటి ఘటం లక్షణాలు ఒక సాధారణ అడ్డుకోత ప్రాంతానికి సూచించబడతాయి కనుక వాటిని ఘటం యొక్క వేర్వేరు భౌతిక కోణాలు కోసం సరిపోల్చవచ్చు. తయారీ అమర్పులో దీనికి పరిమిత లాభం కారణంగా, ఇక్కడ అన్ని ఘటాలు ఒకే పరిమాణాన్ని కలిగి ఉంటే, ఇది పరిశోధనలో మరియు తయారీదారుల మధ్య ఘటాలను సరిపోల్చడానికి ఉపయోగ పడుతుంది. మరొక ప్రయోజనం ఏమిటంటే సాధారణంగా సాంద్రత సమీకరణం సమాన క్రమంలోని ప్రమాణానికి పారామీటర్ విలువను గణిస్తుంది, ఇది స్థానిక పరిష్కార పద్ధతులతో వీటి సంఖ్యా శాస్త్ర సంగ్రహణను సులభం మరియు మరింత యదార్థంగా చేస్తుంది.


ఈ సూత్రీకరణకు అనిబద్ధ పరిమితులు ఉన్నాయి. ఉదాహరణకు, ఘటం పరిమాణాలు కుంచించుకపోయిన కారణంగా నిర్దిష్ట పరాన్నజీవుల ప్రభావాలు ప్రాధాన్యత పెరుగుతుంది మరియు ఇది సంగ్రహించిన పారామీటర్ విలువలను ప్రభావితం చేయవచ్చు. జంక్షన్ పునఃకలయిక మరియు అశుచి ఘటం సరిహద్దుల్లో అధికంగా ఉంటుంది, కనుక భారీ ఘటాలతో పోల్చినప్పుడు సూక్ష్మ ఘటాలు అధిక J0 విలువలు లేదా తక్కువ RSH విలువలను ప్రదర్శించవచ్చు, మిగిలిన సందర్భాల్లో అవి ఒకే విధంగా ప్రవర్తిస్తాయి. ఇటువంటి సందర్భాల్లో, ఘటాల మధ్య పోలికను చాలా జాగ్రత్తగా మరియు ఈ ప్రభావాలను దృష్టిలో ఉంచుకుని నిర్వహించాలి.


ఈ విధానాన్ని పోల్చదగ్గ నమూనాతో సౌర ఘటాలను పోల్చడానికి మాత్రమే ఉపయోగిస్తారు. ఉదాహరణకు, ప్రత్యేక స్ఫటికాకార సిలికాన్ సౌర ఘటాలు వంటి ప్రాథమిక ద్విఘాత సౌర ఘాతాలు మరియు ప్రత్యేక సన్నని పొర సౌర ఘటాలు వంటి సంకుచితంగా ఉన్నప్పటికీ పొడవైన సౌర ఘటాల మధ్య పోలిక వేర్వేరు రకాల కరెంట్ మార్గాలు కారణంగా ఏర్పడే తప్పుడు ఊహాలుకు దారి తీయవచ్చు మరియు కనుక ఉదాహరణకు ప్రభావం ఒక పంపిణీ శ్రేణి నిరోధం rS అవుతుంది [21] [22].


ఘటం ఉష్ణోగ్రత[మార్చు]
Effect of temperature on the current-voltage characteristics of a solar cell


ఉష్ణోగ్రత స్వాభావిక సమీకరణాన్ని రెండు మార్గాల్లో ప్రభావితం చేస్తుంది: ప్రత్యక్షంగా, ఘాతంకం పదాల్లో T ద్వారా మరియు పరోక్షంగా, I0 పై దాని ప్రభావం ద్వారా (ఖచ్చితంగా చెప్పాలంటే, ఉష్ణోగ్రత అన్ని పదాలను ప్రభావితం చేస్తుంది, కాని ఈ రెండు మిగిలిన వాటి కంటే ఎక్కువగా ప్రభావితమవుతాయి). స్వాభావిక సమీకరణంలో పెరుగుతున్న T ఘాతంకం యొక్క ప్రమాణాన్ని తగ్గిస్తుంది, I0 విలువ T తో ఘాతంకంగా పెరుగుతుంది. తుది ప్రభావం అనేది పెరుగుతున్న ఉష్ణోగ్రతతో సమానంగా VOC (బాహ్య-వలయ వోల్టేజ్) తగ్గించడాన్ని చెప్పవచ్చు. ఈ తగ్గింపు యొక్క ప్రమాణం అనేది VOC కు విలోమానుపాతంలో ఉంటుంది; అంటే అధిక VOC విలువలతో ఉన్న ఘటాలు పెరుగుతున్న ఉష్ణోగ్రతతో వోల్టేజ్‌లో స్వల్ప తగ్గింపులకు గురవుతాయి. పలు స్ఫటికాకార సిలికాన్ సౌర ఘటాలకు తగ్గింపు సుమారు 0.50%/°C ఉంటుంది, అయితే అధిక-సామర్థ్య స్ఫటికాకార సిలికాన్ ఘటాలకు రేటు సుమారు 0.35%/°C ఉంటుంది. పోల్చడం ద్వారా, ఘటం ఏ విధంగా తయారు చేయబడింది అనే దానిపై ఆధారపడి రూపరహిత సిలికాన్ సౌర ఘటాల రేటు 0.20-0.30%/°C ఉంటుంది.


ఎందుకంటే ఘటంలోని తాపంగా ఉత్పాదించబడిన వాహకాల సంఖ్యలో పెరుగుదల కారణంగా కాంతిఉత్పాదక కరెంట్ IL పెరుగుతున్న ఉష్ణోగ్రతతో నెమ్మిదిగా పెరుగుతుంది. ఈ ప్రభావం తక్కువగా ఉంటుంది, ఎందుకంటే: స్ఫటికాకార సిలికాన్ ఘటాలకు సుమారు 0.065%/°C అయితే, రూపరహిత సిలికాన్ ఘటాలకు 0.09% అవుతుంది.


ఘటం సామర్థ్యంపై ఉష్ణోగ్రత యొక్క మొత్తం ప్రభావాన్ని స్వాభావిక సమీకరణంతో కలిపి ఈ కారకాలను ఉపయోగించి గణించవచ్చు. అయితే, కరెంట్‌లో మార్పు కంటే వోల్టేజ్‌లో మార్పు శక్తివంతం కనుక సామర్థ్యంపై మొత్తం ప్రభావం వోల్టేజ్‌పై ఉండే దానితో సమానంగా ఉంటుంది. అధిక స్ఫటికాకార సిలికాన్ సౌర ఘటాలు సామర్థ్యంలో 0.50%/°C క్షీణిస్తాయి, అయితే అధిక రూపరహిత ఘటాలు 0.15-0.25%/°C క్షీణిస్తాయి. ఎగువన ఉన్న చిత్రం పలు ఉష్ణోగ్రతల వద్ద స్ఫటికాకార సిలికాన్ సౌర ఘటానికి ప్రత్యేకంగా I-V వక్రరేఖలను ప్రదర్శిస్తుంది.


శ్రేణి నిరోధం[మార్చు]
Effect of series resistance on the current-voltage characteristics of a solar cell


శ్రేణి నిరోధం పెరుగుతున్న కారణంగా, జంక్షన్ వోల్టేజ్ మరియు టెర్మినల్ వోల్టేజ్ మధ్య వోల్టేజ్ తొలగింపు అదే స్థాయి కరెంట్ ప్రవాహానికి అధికంగా ఉంటుంది. ఫలితంగా I-V వక్రరేఖ యొక్క కరెంట్-నియంత్ర భాగం ఆరంభానికి తగ్గడం ప్రారంభమవుతుంది, టెర్మినల్ వోల్టేజ్‌లో భారీ తగ్గింపును V మరియు సూక్ష్మ-వలయ కరెంట్ ISC లో తక్కువ తగ్గింపును నమోదు చేస్తుంది. RS భారీ విలువల కూడా ISC గమనించతగిన క్షీణతను కూడా నమోదు చేస్తుంది; ఈ పద్ధతుల్లో, శ్రేణి నిరోధం అధికారం చెలాయిస్తుంది మరియు సౌర ఘటం ప్రవర్తన ఒక రిసెస్టర్ వలె ఉంటుంది. I-V వక్రరేఖల్లో స్ఫటికాకార సిలికాన్ సౌర ఘటాలకు ఈ ప్రభావాలు కుడివైపున ఉన్న చిత్రంలో ప్రదర్శించబడ్డాయి.


శ్రేణి నిరోధంచే ఏర్పడిన నష్టాలు ఒక మొదటి ఉజ్జాయింపు Ploss=VRsI=I2RSచే ఇవ్వబడుతుంది మరియు (కాంతి-)కరెంట్‌తో వర్గం ప్రకారం పెరుగుతుంది. అందుకే శ్రేణి నిరోధ నష్టాలు అధిక ప్రదీపన సాంద్రతల్లో చాలా ముఖ్యమని చెప్పవచ్చు.


ఉపమార్గ నిరోధం[మార్చు]
Effect of shunt resistance on the current–voltage characteristics of a solar cell


ఉపమార్గ నిరోధం తగ్గించినప్పుడు, ఇవ్వబడిన జంక్షన్ వోల్టేజ్ స్థాయికి ఉపమార్గ రిసెస్టర్ ద్వారా మళ్లించబడే కరెంట్ పెరుగుతుంది. ఫలితంగా I-V వక్రరేఖ యొక్క వోల్టేజ్ నియంత్రణ భాగం ఆరంభానికి తగ్గడం ప్రారంభిస్తుంది, టెర్మినల్ కరెంట్ I గమనించతగిన తరుగుదల మరియు VOC లో కొంచెం క్షీణత కనిపిస్తుంది. RSH యొక్క చాలా తక్కువ విలువలు VOC లో గమనించదగిన క్షీణతను నమోదు చేస్తుంది. అధిక శ్రేణి నిరోధాల్లోని అధిక సందర్భాల్లో. చెడు ఉపమార్గ సౌర ఘటం రిసెస్టర్‌పై పనిచేసే వాటితో సమాన లక్షణాలను కలిగి ఉంటుంది. ఈ ప్రభావాలు స్ఫటికాకార సిలికాన్ సౌర ఘటాలకు I-V వక్రరేఖల్లో కుడివైపు చిత్రంలో వలె ప్రదర్శించబడతాయి.


తిరోగమన గరిష్ట కరెంట్[మార్చు]
Effect of reverse saturation current on the current-voltage characteristics of a solar cell


అనంతమైన ఉపమార్గ నిరోధాన్ని భావిస్తే, స్వాభావిక సమీకరం VOC కోసం క్రింది విధంగా పరిష్కరించబడుతుంది:


V_{OC} = \frac{kT}{q} \ln\left(\frac{I_{SC}}{I_{0}} + 1\right).


అయితే, I0 లో పెరుగుదల VOC లో ఒక క్షీణతను పెరుగుదల యొక్క సంవర్గమానానికి తిరోగమనంలో అనుపాతంలో ఉత్పత్తి అవుతుంది. ఇది గణిత శాస్త్రం ప్రకారం పైన పేర్కొన్న ఉష్ణోగ్రతలో పెరుగుదలతో పాటు VOC లో క్షీణతకు కారణాన్ని వివరిస్తుంది. స్ఫటికాకార సిలికాన్ సౌర ఘటం యొక్క I-V వక్రరేఖలో తిరోగమన గరిష్ట కరెంట్ ప్రభావం కుడివైపున ఉన్న చిత్రంలో చూపబడింది. భౌతికంగా, తిరోగమన గరిష్ట కరెంట్ అనేది తిరోగమన పద్ధతిలో p-n జంక్షన్‌లో వాహకాల "లీకేజ్" యొక్క కొలమానంగా చెప్పవచ్చు. ఈ లీకేజ్ జంక్షన్‌లో ఏదో ఒకవైపు సహజ ప్రాంతాల్లో వాహకాల పునఃకలయిక యొక్క ఫలితంగా ఏర్పడుతుంది.


ఆదర్శ కారకం[మార్చు]
Effect of ideality factor on the current-voltage characteristics of a solar cell


ఆదర్శ కారకం (ఉద్గార కారకంగా కూడా పిలుస్తారు) అనేది సిద్ధాంతం ప్రకారం లెక్కించిన డయోడ్ యొక్క ప్రవర్తన ఎంత సమీప పోలికను పేర్కొనే ఒక ప్రత్యేకమైన పారామీటర్‌గా చెప్పవచ్చు, ఇందులో డయోడ్ యొక్క p-n జంక్షన్ అనేది ఒక అనంత చిత్రికగా మరియు స్థల-విద్యుదాహక ప్రాంతంలో పునఃకలయిక లేదని ఊహించాలి. n = 1 అయినప్పుడు, సిద్ధాంతానికి పోలిన ఖచ్చితమైన పోలిక సూచించబడతుంది. ప్రాంత-విద్యుదాహక ప్రాంతంలో పునఃకలయిక ఇతర పునఃకలయికపై అధికారం చెలాయిస్తున్నప్పుడు, n = 2 అవుతుంది. ఇతర అన్ని పారామీటర్‌ల కంటే స్వతంత్రంగా ఆదర్శ కారకాన్ని మార్చడం యొక్క ప్రభావం కుడివైపు ప్రదర్శించబడుతున్న చిత్రంలో I-V వక్రరేఖల్లో ఒక స్ఫటికాకార సిలికాన్ సౌర ఘటానికి ప్రదర్శిస్తుంది.


సాంప్రదాయిక డయోడ్‌లతో పోలిస్తే బాగా పెద్ద సౌర ఘటాలు ఉత్తమ దాదాపు ఒక అనంత స్థలం మరియు సాధారణంగా ప్రాథమిక పరీక్ష పరిస్థితి (n ≈ 1 ) క్రింద సమీప-ఆదర్శ ప్రవర్తనను ప్రదర్శిస్తుంది. అయితే నిర్దిష్ట ఆచరణ పరిస్థితుల్లో, స్థల-విద్యుదావేశ ప్రాంతంలో పరికర అమలు పునఃకలయికచే అధికారం చెలాయించవచ్చు. ఇది I0 లో అధిక పెరుగుదల అలాగే n ≈ 2 కు ఆదర్శ కారకంలో పెరుగుదలకు కారణం కావచ్చు. తర్వాత సౌర ఘటం ఫలిత వోల్టేజ్‌ను పెంచుతుంది, మునుపటిది దానిని కోయడానికి ప్రయత్నిస్తుంది. అయితే, నికర ప్రభావం అనేది కుడివైపున ఉన్న చిత్రంలో పెరుగుతున్న n కు చూపిన వోల్టేజ్‌లో పెరుగుదల మరియు ఎగువన ఉన్న చిత్రంలోని పెరుగుతున్న I0 కు ప్రదర్శించిన వోల్టేజ్‌లో తరుగుదల కలయికగా చెప్పవచ్చు. ప్రత్యేకంగా, I0 అనేది మరింత స్పష్టమైన కారకంగా చెప్పవచ్చు మరియు ఫలితంగా వోల్టేజ్‌లో తరుగుదల సంభవిస్తుంది.


సౌర ఘటం సామర్థ్య కారకాలు[మార్చు]

శక్తి మార్పిడి సామర్థ్యం[మార్చు]

Dust often accumulates on the glass of solar panels seen here as black dots.


ఒక సౌర ఘటం యొక్క శక్తి మార్పిడి సామర్థ్యం (η, "ఈటా") అనేది ఒక సౌర ఘటం ఒక విద్యుత్తు వలయానికి అనుసంధానించినప్పుడు మార్పిడి అయ్యే (శోషిత కాంతి నుండి విద్యుత్తు శక్తిగా) మరియు సేకరించబడే శక్తి శాతంగా చెప్పవచ్చు. ఈ పదాన్ని ప్రాథమిక పరీక్ష పరిస్థితుల్లో (STC) లోపలకి ప్రవహించిన కాంతి వికరణం చే (E , W/m2లో) విభజించబడే గరిష్ట శక్తి స్థానం Pm యొక్క నిష్పత్తిని మరియు సౌర ఘటం యొక్క ఉపరితల వైశ్యాల్యాన్ని (m2లో Ac ) ఉపయోగించి లెక్కిస్తారు.


\eta = \frac{P_{m}}{E \times A_c}


STC specifies a temperature of 25 °C and an irradiance of 1000 W/m2 with an air mass 1.5 (AM1.5) spectrum. These correspond to the irradiance and spectrum of sunlight incident on a clear day upon a sun-facing 37°-tilted surface with the sun at an angle of 41.81° above the horizon.[23][24] This condition approximately represents solar noon near the spring and autumn equinoxes in the continental United States with surface of the cell aimed directly at the sun. Thus, under these conditions a solar cell of 12% efficiency with a 100 cm2 (0.01 m2) surface area can be expected to produce approximately 1.2 watts of power.


The losses of a solar cell may be broken down into reflectance losses, thermodynamic efficiency, recombination losses and resistive electrical loss. The overall efficiency is the product of each of these individual losses.


Due to the difficulty in measuring these parameters directly, other parameters are measured instead: thermodynamic efficiency, quantum efficiency, VOC ratio, and fill factor. Reflectance losses are a portion of the quantum efficiency under "external quantum efficiency". Recombination losses make up a portion of the quantum efficiency, VOC ratio, and fill factor. Resistive losses are predominantly categorized under fill factor, but also make up minor portions of the quantum efficiency, VOC ratio.


[25]


Thermodynamic efficiency limit[మార్చు]

Solar cells operate as quantum energy conversion devices, and are therefore subject to the "thermodynamic efficiency limit". Photons with an energy below the band gap of the absorber material cannot generate a hole-electron pair, and so their energy is not converted to useful output and only generates heat if absorbed. For photons with an energy above the band gap energy, only a fraction of the energy above the band gap can be converted to useful output. When a photon of greater energy is absorbed, the excess energy above the band gap is converted to kinetic energy of the carrier combination. The excess kinetic energy is converted to heat through phonon interactions as the kinetic energy of the carriers slows to equilibrium velocity.


Solar cells with multiple band gap absorber materials are able to more efficiently convert the solar spectrum. By using multiple band gaps, the solar spectrum may be broken down into smaller bins where the thermodynamic efficiency limit is higher for each bin.[26]


Quantum efficiency[మార్చు]


As described above, when a photon is absorbed by a solar cell it can produce a pair of free charge carriers, i.e. an electron-hole pair. One of the carriers (the minority carrier) may then be able to reach the p-n junction and contribute to the current produced by the solar cell; such a carrier is said to be collected . Alternatively, the carrier may give up its energy and once again become bound to an atom within the solar cell without being collected ; this process is then called recombination since one electron and one hole recombine and thereby annihilate the associated free charge. The carriers that recombine do not contribute to the generation of electrical current.


Quantum efficiency refers to the percentage of photons that are converted to electric current (i.e., collected carriers) when the cell is operated under short circuit conditions. External quantum efficiency (EQE) is the fraction of incident photons that are converted to electrical current, while internal quantum efficiency (IQE) is the fraction of absorbed photons that are converted to electrical current. Mathematically, internal quantum efficiency is related to external quantum efficiency by the reflectance (R) and the transmittance (T) of the solar cell by IQE=EQE/(1-R-T). Please note that for a thick bulk Si solar cell T is approximately zero and is therefore in practical cases often neglected.


Quantum efficiency should not be confused with energy conversion efficiency, as it does not convey information about the fraction of power that is converted by the solar cell. Furthermore, quantum efficiency is most usefully expressed as a spectral measurement (that is, as a function of photon wavelength or energy). Since some wavelengths are absorbed more effectively than others in most semiconductors, spectral measurements of quantum efficiency can yield valuable information about the quality of the semiconductor bulk and surfaces.


Maximum-power point[మార్చు]

A solar cell may operate over a wide range of voltages (V) and currents (I). By increasing the resistive load on an irradiated cell continuously from zero (a short circuit ) to a very high value (an open circuit ) one can determine the maximum-power point, the point that maximizes V×I; that is, the load for which the cell can deliver maximum electrical power at that level of irradiation. (The output power is zero in both the short circuit and open circuit extremes).


A high quality, monocrystalline silicon solar cell, at 25 °C cell temperature, may produce 0.60 volts open-circuit (VOC ). The cell temperature in full sunlight, even with 25 °C air temperature, will probably be close to 45 °C, reducing the open-circuit voltage to 0.55 volts per cell. The voltage drops modestly, with this type of cell, until the short-circuit current is approached (Isc). Maximum power (with 45 °C cell temperature) is typically produced with 75% to 80% of the open-circuit voltage (0.43 volts in this case) and 90% of the short-circuit current. This output can be up to 70% of the VOC x ISC product. The short-circuit current (Isc) from a cell is nearly proportional to the illumination, while the open-circuit voltage (VOC ) may drop only 10% with a 80% drop in illumination. Lower-quality cells have a more rapid drop in voltage with increasing current and could produce only 1/2 VOC at 1/2 ISC . The usable power output could thus drop from 70% of the VOC x ISC product to 50% or even as little as 25%. Vendors who rate their solar cell "power" only as VOC x ISC , without giving load curves, can be seriously distorting their actual performance.


The maximum power point of a photovoltaic varies with incident illumination. For systems large enough to justify the extra expense, a maximum power point tracker tracks the instantaneous power by continually measuring the voltage and current (and hence, power transfer), and uses this information to dynamically adjust the load so the maximum power is always transferred, regardless of the variation in lighting.


Fill factor[మార్చు]

Another defining term in the overall behavior of a solar cell is the fill factor (FF ). This is the ratio of the maximum power point divided by the open circuit voltage (Voc ) and the short circuit current (Isc ):


FF = \frac{P_{m}}{V_{oc} \times I_{sc}} = \frac{\eta \times A_c \times E}{V_{oc} \times I_{sc}}.


The fill factor is directly affected by the values of the cells series and shunt resistance. Increasing the shunt resistance (Rsh) and decreasing the series resistance (Rs) will lead to higher fill factor, thus resulting in greater efficiency, and pushing the cells output power closer towards its theoretical maximum[19]


Comparison of energy conversion efficiencies[మార్చు]


At this point, discussion of the different ways to calculate efficiency for space cells and terrestrial cells is necessary to alleviate confusion. In space, where there is no atmosphere, the spectrum of the sun is relatively unfiltered. However, on earth, with air filtering the incoming light, the solar spectrum changes. To account for the spectral differences, a system was devised to calculate this filtering effect. Simply, the filtering effect ranges from Air Mass 0 (AM0) in space, to approximately Air Mass 1.5 on Earth. Multiplying the spectral differences by the quantum efficiency of the solar cell in question will yield the efficiency of the device. For example, a silicon solar cell in space might have an efficiency of 14% at AM0, but have an efficiency of 16% on earth at AM 1.5. Terrestrial efficiencies typically are greater than space efficiencies.


Solar cell efficiencies vary from 6% for amorphous silicon-based solar cells to 40.7% with multiple-junction research lab cells and 42.8% with multiple dies assembled into a hybrid package.[27] Solar cell energy conversion efficiencies for commercially available multicrystalline Si solar cells are around 14-19%.[28] The highest efficiency cells have not always been the most economical — for example a 30% efficient multijunction cell based on exotic materials such as gallium arsenide or indium selenide and produced in low volume might well cost one hundred times as much as an 8% efficient amorphous silicon cell in mass production, while only delivering about four times the electrical power.


However, there is a way to "boost" solar power. By increasing the light intensity, typically photogenerated carriers are increased, resulting in increased efficiency by up to 15%. These so-called "concentrator systems" have only begun to become cost-competitive as a result of the development of high efficiency GaAs cells. The increase in intensity is typically accomplished by using concentrating optics. A typical concentrator system may use a light intensity 6-400 times the sun, and increase the efficiency of a one sun GaAs cell from 31% at AM 1.5 to 35%. See Solar cell#Concentrating photovoltaics (CPV) below and Concentrating solar power (CSP).


A common method used to express economic costs of electricity-generating systems is to calculate a price per delivered kilowatt-hour (kWh). The solar cell efficiency in combination with the available irradiation has a major influence on the costs, but generally speaking the overall system efficiency is important. Using the commercially available solar cells (as of 2006) and system technology leads to system efficiencies between 5 and 19%. As of 2005, photovoltaic electricity generation costs ranged from ~0.60 US$/kWh (0.50 €/kWh) (central Europe) down to ~0.30 US$/kWh (0.25 €/kWh) in regions of high solar irradiation. This electricity is generally fed into the electrical grid on the customer's side of the meter. The cost can be compared to prevailing retail electric pricing (as of 2005), which varied from between 0.04 and 0.50 US$/kWh worldwide. (Note: in addition to solar irradiance profiles, these costs/kWh calculations will vary depending on assumptions for years of useful life of a system. Most c-Si panels are warranted for 25 years and should see 35+ years of useful life.)


Watts peak[మార్చు]


Since solar cell output power depends on multiple factors, such as the sun's incidence angle, for comparison purposes between different cells and panels, the measure of watts peak (Wp) is used. It is the output power under these conditions known as STC. The standard test conditions imply an insolation (solar irradiance) of 1 kW/m2, a solar reference spectrum AM (airmass) of 1.5 and a cell temperature 25 °C.


Solar cells and energy payback[మార్చు]


In the 1990s, when silicon cells were twice as thick, efficiencies were much lower than today and lifetimes were shorter, it may well have cost more energy to make a cell than it could generate in a lifetime. In the meantime, the technology has progressed significantly, and the energy payback time, defined as the recovery time required for generating the energy spent for manufacturing of the respective technical energy systems, of a modern photovoltaic module is typically from 1 to 4 years[14][29] depending on the module type and location. Generally, thin-film technologies - despite having comparatively low conversion efficiencies - achieve significantly shorter energy payback times than conventional systems (often < 1 year).[30] With a typical lifetime of 20 to 30 years, this means that modern solar cells are net energy producers, i.e. they generate significantly more energy over their lifetime than the energy expended in producing them.[14][31][32]


Light-absorbing materials[మార్చు]


All solar cells require a light absorbing material contained within the cell structure to absorb photons and generate electrons via the photovoltaic effect . The materials used in solar cells tend to have the property of preferentially absorbing the wavelengths of solar light that reach the Earth surface. However, some solar cells are optimized for light absorption beyond Earth's atmosphere as well. Light absorbing materials can often be used in multiple physical configurations to take advantage of different light absorption and charge separation mechanisms.


Photovoltaic panels are normally made of either silicon or thin-film cells:


Many currently available solar cells are configured as bulk materials that are subsequently cut into wafers and treated in a "top-down" method of synthesis (silicon being the most prevalent bulk material).


Other materials are configured as thin-films (inorganic layers, organic dyes, and organic polymers) that are deposited on supporting substrates, while a third group are configured as nanocrystals and used as quantum dots (electron-confined nanoparticles) embedded in a supporting matrix in a "bottom-up" approach. Silicon remains the only material that is well-researched in both bulk (also called wafer-based) and thin-film configurations.


Bulk[మార్చు]

These bulk technologies are often referred to as wafer-based manufacturing. In other words, in each of these approaches, self-supporting wafers between 180 to 240 micrometers thick are processed and then soldered together to form a solar cell module.


Crystalline silicon[మార్చు]


Basic structure of a silicon based solar cell and its working mechanism.

By far, the most prevalent bulk material for solar cells is crystalline silicon (abbreviated as a group as c-Si ), also known as "solar grade silicon". Bulk silicon is separated into multiple categories according to crystallinity and crystal size in the resulting ingot, ribbon, or wafer.


  1. monocrystalline silicon (c-Si): often made using the Czochralski process. Single-crystal wafer cells tend to be expensive, and because they are cut from cylindrical ingots, do not completely cover a square solar cell module without a substantial waste of refined silicon. Hence most c-Si panels have uncovered gaps at the four corners of the cells.
  2. Poly- or multicrystalline silicon (poly-Si or mc-Si): made from cast square ingots — large blocks of molten silicon carefully cooled and solidified. Poly-Si cells are less expensive to produce than single crystal silicon cells, but are less efficient. US DOE data shows that there were a higher number of multicrystalline sales than monocrystalline silicon sales.
    Ribbon silicon [33] is a type of multicrystalline silicon: it is formed by drawing flat thin films from molten silicon and results in a multicrystalline structure. These cells have lower efficiencies than poly-Si, but save on production costs due to a great reduction in silicon waste, as this approach does not require sawing from ingots.


Thin films[మార్చు]


The various thin-film technologies currently being developed reduce the amount (or mass) of light absorbing material required in creating a solar cell . This can lead to reduced processing costs from that of bulk materials (in the case of silicon thin films) but also tends to reduce energy conversion efficiency (an average 7 to 10% efficiency), although many multi-layer thin films have efficiencies above those of bulk silicon wafers.


They have become popular compared to wafer silicon due to lower costs and advantages including flexibility, lighter weights, and ease of integration.


Cadmium telluride solar cell[మార్చు]


A cadmium telluride solar cell is a solar cell based on cadmium telluride, an efficient light-absorbing material for thin-film cells. Compared to other thin-film materials, CdTe is easier to deposit and more suitable for large-scale production.


There has been much discussion of the toxicity of CdTe-based solar cells. The perception of the toxicity of CdTe is based on the toxicity of elemental cadmium, a heavy metal that is a cumulative poison. While the toxicity of CdTe is presently under debate, it has been shown that the release of cadmium to the atmosphere is impossible during normal operation of the cells and is unlikely during fires in residential roofs.[34] Furthermore, a square meter of CdTe contains approximately the same amount of Cd as a single C cell Nickel-cadmium battery, in a more stable and less soluble form.[34]


Copper-Indium Selenide[మార్చు]



The materials based on CuInSe2 that are of interest for photovoltaic applications include several elements from groups I, III and VI in the periodic table. These semiconductors are especially attractive for thin film solar cell application because of their high optical absorption coefficients and versatile optical and electrical characteristics which can in principle be manipulated and tuned for a specific need in a given device[35].


CIS is an abbreviation for general chalcopyrite films of copper indium selenide (C uI nS e2), CIGS mentioned below is a variation of CIS. CIS films (no Ga) achieved greater than 14% efficiency. However, manufacturing costs of CIS solar cells at present are high when compared with amorphous silicon solar cells but continuing work is leading to more cost-effective production processes. The first large-scale production of CIS modules was started in 2006 in Germany by Würth Solar. Manufacturing techniques vary and include the use of Ultrasonic Nozzles for material deposition. Electro-Plating in other efficient technology to apply the CI(G)S layer.


When gallium is substituted for some of the indium in CIS, the material is referred to as CIGS, or copper indium/gallium diselenide, a solid mixture of the semiconductors CuInSe2 and CuGaSe2, often abbreviated by the chemical formula CuInxGa(1-x)Se2. Unlike the conventional silicon based solar cell, which can be modelled as a simple p-n junction (see under semiconductor), these cells are best described by a more complex heterojunction model. The best efficiency of a thin-film solar cell as of March 2008 was 19.9% with CIGS absorber layer.[36] Higher efficiencies (around 30%) can be obtained by using optics to concentrate the incident light or by using multi-junction tandem solar cells. The use of gallium increases the optical bandgap of the CIGS layer as compared to pure CIS, thus increasing the open-circuit voltage, but decreasing the short circuit current. In another point of view, gallium is added to replace indium due to gallium's relative availability to indium. Approximately 70%[37] of indium currently produced is used by the flat-screen monitor industry. However, the atomic ratio for Ga in the >19% efficient CIGS solar cells is ~7%, which corresponds to a bandgap of ~1.15 eV. CIGS solar cells with higher Ga amounts have lower efficiency. For example, CGS solar cells (which have a bandgap of ~1.7 eV have a record efficiency of 9.5% for pure CGS and 10.2% for surface-modified CGS. Some investors in solar technology worry that production of CIGS cells will be limited by the availability of indium. Producing 2 GW of CIGS cells (roughly the amount of silicon cells produced in 2006) would use about 10% of the indium produced in 2004.[38] For comparison, silicon solar cells used up 33% of the world's electronic grade silicon production in 2006.


Se allows for better uniformity across the layer and so the number of recombination sites in the film are reduced which benefits the quantum efficiency and thus the conversion efficiency.[citation needed]


Gallium arsenide multijunction[మార్చు]


High-efficiency multijunction cells were originally developed for special applications such as satellites and space exploration, but at present, their use in terrestrial concentrators might be the lowest cost alternative in terms of $/kWh and $/W.[39] These multijunction cells consist of multiple thin films produced using metalorganic vapour phase epitaxy. A triple-junction cell, for example, may consist of the semiconductors: GaAs, Ge, and GaInP2.[40] Each type of semiconductor will have a characteristic band gap energy which, loosely speaking, causes it to absorb light most efficiently at a certain color, or more precisely, to absorb electromagnetic radiation over a portion of the spectrum. The semiconductors are carefully chosen to absorb nearly all of the solar spectrum, thus generating electricity from as much of the solar energy as possible.


GaAs based multijunction devices are the most efficient solar cells to date, reaching a record high of 40.7% efficiency under solar concentration and laboratory conditions.[41]


This technology is currently being utilized in the Mars rover missions.


Tandem solar cells based on monolithic, series connected, gallium indium phosphide (GaInP), gallium arsenide GaAs, and germanium Ge pn junctions, are seeing demand rapidly rise. In just the past 12 months (12/2006 - 12/2007), the cost of 4N gallium metal has risen from about $350 per kg to $680 per kg. Additionally, germanium metal prices have risen substantially to $1000–$1200 per kg this year. Those materials include gallium (4N, 6N and 7N Ga), arsenic (4N, 6N and 7N) and germanium, pyrolitic boron nitride (pBN) crucibles for growing crystals, and boron oxide, these products are critical to the entire substrate manufacturing industry.


Triple-junction GaAs solar cells were also being used as the power source of the Dutch four-time World Solar Challenge winners Nuna in 2005 and 2007, and also by the Dutch solar cars Solutra (2005) and Twente One (2007).


The Dutch Radboud University Nijmegen set the record for thin film solar cell effiency using a single junction GaAs to 25.8% in August 2008 using only 4 µm thick GaAs layer which can be transferred from a wafer base to glass or plastic film.[42]


Light-absorbing dyes (DSSC)[మార్చు]


Typically a ruthenium metalorganic dye (Ru-centered) is used as a monolayer of light-absorbing material. The dye-sensitized solar cell depends on a mesoporous layer of nanoparticulate titanium dioxide to greatly amplify the surface area (200-300 m2/g TiO2, as compared to approximately 10 m2/g of flat single crystal). The photogenerated electrons from the light absorbing dye are passed on to the n-type TiO2, and the holes are passed to an electrolyte on the other side of the dye. The circuit is completed by a redox couple in the electrolyte, which can be liquid or solid. This type of cell allows a more flexible use of materials, and is typically manufactured by screen printing and/or use of Ultrasonic Nozzles, with the potential for lower processing costs than those used for bulk solar cells. However, the dyes in these cells also suffer from degradation under heat and UV light, and the cell casing is difficult to seal due to the solvents used in assembly. In spite of the above, this is a popular emerging technology with some commercial impact forecast within this decade. The first commercial shipment of DSSC solar modules occurred in July 2009 from G24i Innovations (www.g24i.com).


Organic/polymer solar cells[మార్చు]

Organic solar cells and polymer solar cells are built from thin films (typically 100 nm) of organic semiconductors such as polymers and small-molecule compounds like polyphenylene vinylene, copper phthalocyanine (a blue or green organic pigment) and carbon fullerenes and fullerene derivatives such as PCBM. Energy conversion efficiencies achieved to date using conductive polymers are low compared to inorganic materials. However, it improved quickly in the last few years and the highest NREL (National Renewable Energy Laboratory) certified efficiency has reached 6.77%[43]. In addition, these cells could be beneficial for some applications where mechanical flexibility and disposability are important.


These devices differ from inorganic semiconductor solar cells in that they do not rely on the large built-in electric field of a PN junction to separate the electrons and holes created when photons are absorbed. The active region of an organic device consists of two materials, one which acts as an electron donor and the other as an acceptor. When a photon is converted into an electron hole pair, typically in the donor material, the charges tend to remain bound in the form of an exciton, and are separated when the exciton diffuses to the donor-acceptor interface. The short exciton diffusion lengths of most polymer systems tend to limit the efficiency of such devices. Nanostructured interfaces, sometimes in the form of bulk heterojunctions, can improve performance.[44]


Silicon thin films[మార్చు]

Silicon thin-film cells are mainly deposited by chemical vapor deposition (typically plasma-enhanced (PE-CVD)) from silane gas and hydrogen gas. Depending on the deposition parameters, this can yield:[45]

  1. Amorphous silicon (a-Si or a-Si:H)
  2. Protocrystalline silicon or
  3. Nanocrystalline silicon (nc-Si or nc-Si:H), also called microcrystalline silicon.


It has been found that protocrystalline silicon with a low volume fraction of nanocrystalline silicon is optimal for high open circuit voltage.[46] These types of silicon present dangling and twisted bonds, which results in deep defects (energy levels in the bandgap) as well as deformation of the valence and conduction bands (band tails). The solar cells made from these materials tend to have lower energy conversion efficiency than bulk silicon, but are also less expensive to produce. The quantum efficiency of thin film solar cells is also lower due to reduced number of collected charge carriers per incident photon.


Amorphous silicon has a higher bandgap (1.7 eV) than crystalline silicon (c-Si) (1.1 eV), which means it absorbs the visible part of the solar spectrum more strongly than the infrared portion of the spectrum. As nc-Si has about the same bandgap as c-Si, the nc-Si and a-Si can advantageously be combined in thin layers, creating a layered cell called a tandem cell . The top cell in a-Si absorbs the visible light and leaves the infrared part of the spectrum for the bottom cell in nc-Si.

Recently, solutions to overcome the limitations of thin-film crystalline silicon have been developed. Light trapping schemes where the weakly absorbed long wavelength light is obliquely coupled into the silicon and traverses the film several times can significantly enhance the absorption of sunlight in the thin silicon films.[47] Thermal processing techniques can significantly enhance the crystal quality of the silicon and thereby lead to higher efficiencies of the final solar cells.[48]


A silicon thin film technology is being developed for building integrated photovoltaics (BIPV) in the form of semi-transparent solar cells which can be applied as window glazing. These cells function as window tinting while generating electricity.


Nanocrystalline solar cells[మార్చు]


These structures make use of some of the same thin-film light absorbing materials but are overlain as an extremely thin absorber on a supporting matrix of conductive polymer or mesoporous metal oxide having a very high surface area to increase internal reflections (and hence increase the probability of light absorption). Using nanocrystals allows one to design architectures on the length scale of nanometers, the typical exciton diffusion length. In particular, single-nanocrystal ('channel') devices, an array of single p-n junctions between the electrodes and separated by a period of about a diffusion length, represent a new architecture for solar cells and potentially high efficiency.


Schema of Concentrating photovoltaics

Concentrating photovoltaics (CPV)[మార్చు]

Concentrating photovoltaic systems use a large area of lenses or mirrors to focus sunlight on a small area of photovoltaic cells.[49] High concentration means a hundred or more times direct sunlight is focused when compared with crystalline silicon panels. Most commercial producers are developing systems that concentrate between 400 and 1000 suns. All concentration systems need a one axis or more often two axis tracking system for high precision, since most systems only use direct sunlight and need to aim at the sun with errors of less than 3 degrees. The primary attraction of CPV systems is their reduced usage of semiconducting material which is expensive and currently in short supply. Additionally, increasing the concentration ratio improves the performance of high efficiency photovoltaic cells.[50] Despite the advantages of CPV technologies their application has been limited by the costs of focusing, sun tracking and cooling equipment. On October 25, 2006, the Australian federal government and the Victorian state government together with photovoltaic technology company Solar Systems announced a project using this technology, Solar power station in Victoria, planned to come online in 2008 and be completed by 2013. This plant, at 154 MW, would be ten times larger than the largest current photovoltaic plant in the world.[51]


Silicon solar cell device manufacture[మార్చు]

Solar-powered scientific calculator


Because solar cells are semiconductor devices, they share many of the same processing and manufacturing techniques as other semiconductor devices such as computer and memory chips. However, the stringent requirements for cleanliness and quality control of semiconductor fabrication are a little more relaxed for solar cells. Most large-scale commercial solar cell factories today make screen printed poly-crystalline silicon solar cells. Single crystalline wafers which are used in the semiconductor industry can be made into excellent high efficiency solar cells, but they are generally considered to be too expensive for large-scale mass production.


Poly-crystalline silicon wafers are made by wire-sawing block-cast silicon ingots into very thin (180 to 350 micrometer) slices or wafers. The wafers are usually lightly p-type doped. To make a solar cell from the wafer, a surface diffusion of n-type dopants is performed on the front side of the wafer. This forms a p-n junction a few hundred nanometers below the surface.


Antireflection coatings, which increase the amount of light coupled into the solar cell, are typically next applied. Over the past decade, silicon nitride has gradually replaced titanium dioxide as the antireflection coating of choice because of its excellent surface passivation qualities (i.e., it prevents carrier recombination at the surface of the solar cell). It is typically applied in a layer several hundred nanometers thick using plasma-enhanced chemical vapor deposition (PECVD). Some solar cells have textured front surfaces that, like antireflection coatings, serve to increase the amount of light coupled into the cell. Such surfaces can usually only be formed on single-crystal silicon, though in recent years methods of forming them on multicrystalline silicon have been developed.


The wafer then has a full area metal contact made on the back surface, and a grid-like metal contact made up of fine "fingers" and larger "busbars" are screen-printed onto the front surface using a silver paste. The rear contact is also formed by screen-printing a metal paste, typically aluminium. Usually this contact covers the entire rear side of the cell, though in some cell designs it is printed in a grid pattern. The paste is then fired at several hundred degrees Celsius to form metal electrodes in ohmic contact with the silicon. Some companies use an additional electro-plating step to increase the cell efficiency. After the metal contacts are made, the solar cells are interconnected in series (and/or parallel) by flat wires or metal ribbons, and assembled into modules or "solar panels". Solar panels have a sheet of tempered glass on the front, and a polymer encapsulation on the back. Tempered glass cannot be used with amorphous silicon cells because of the high temperatures during the deposition process.


Miniaturization[మార్చు]

Polycrystalline paper-thin solar cell extends the operating life of mobile phones and other portable systems. LROGC03 type panel is going to have a surface of 41 x 33 millimetres, half the size of the first LROGC02 panel. [52]


Tiny glitter-sized photovoltaic cells (from 14 to 20 micrometers thick) could have intelligent controls, inverters and even storage built in at the chip level. Glitter photovoltaic cells use 100 times less silicon to generate the same amount of electricity. They have 14.9 percent efficiency and off-the-shelf commercial modules range from 13 to 20 percent efficient.[53]


Lifespan[మార్చు]

Most commercially available solar cells are capable of producing electricity for at least twenty years without a significant decrease in efficiency. The typical warranty given by panel manufacturers is for a period of 25 - 30 years, wherein the output shall not fall below 85% of the rated capacity.[citation needed]


వ్యయాలు[మార్చు]

Cost is established in cost-per-watt and in cost-per-watt in 24 hours for infrared capable photovoltaic cells.


Slicing costs[మార్చు]

University of Utah engineers devised a new way to slice thin wafers of the chemical element germanium for use in the most efficient type of solar power cells. The new method should lower the cost of such cells by reducing the waste and breakage of the brittle semiconductor.[54]


Low-cost solar cell[మార్చు]

Dye-sensitized solar cell, and luminescent solar concentrators are considered low-cost solar cells.


This cell is extremely promising because it is made of low-cost materials and does not need elaborate apparatus to manufacture, so it can be made in a DIY way allowing more players to produce it than any other type of solar cell. In bulk it should be significantly less expensive than older solid-state cell designs. It can be engineered into flexible sheets. Although its conversion efficiency is less than the best thin film cells, its price/performance ratio should be high enough to allow it to compete with fossil fuel electrical generation.


Current research on materials and devices[మార్చు]

There are currently many research groups active in the field of photovoltaics in universities and research institutions around the world. This research can be divided into three areas: making current technology solar cells cheaper and/or more efficient to effectively compete with other energy sources; developing new technologies based on new solar cell architectural designs; and developing new materials to serve as light absorbers and charge carriers.


Silicon processing[మార్చు]

One way of reducing the cost is to develop cheaper methods of obtaining silicon that is sufficiently pure. Silicon is a very common element, but is normally bound in silica, or silica sand. Processing silica (SiO2) to produce silicon is a very high energy process - at current efficiencies, it takes one to two years for a conventional solar cell to generate as much energy as was used to make the silicon it contains. More energy efficient methods of synthesis are not only beneficial to the solar industry, but also to industries surrounding silicon technology as a whole.


The current industrial production of silicon is via the reaction between carbon (charcoal) and silica at a temperature around 1700 °C. In this process, known as carbothermic reduction, each tonne of silicon (metallurgical grade, about 98% pure) is produced with the emission of about 1.5 tonnes of carbon dioxide.


Solid silica can be directly converted (reduced) to pure silicon by electrolysis in a molten salt bath at a fairly mild temperature (800 to 900 °C).[55][56] While this new process is in principle the same as the FFC Cambridge Process which was first discovered in late 1996, the interesting laboratory finding is that such electrolytic silicon is in the form of porous silicon which turns readily into a fine powder, with a particle size of a few micrometres, and may therefore offer new opportunities for development of solar cell technologies.


Another approach is also to reduce the amount of silicon used and thus cost, is by micromachining wafers into very thin, virtually transparent layers that could be used as transparent architectural coverings.[57] The technique involves taking a silicon wafer, typically 1 to 2 mm thick, and making a multitude of parallel, transverse slices across the wafer, creating a large number of slivers that have a thickness of 50 micrometres and a width equal to the thickness of the original wafer. These slices are rotated 90 degrees, so that the surfaces corresponding to the faces of the original wafer become the edges of the slivers. The result is to convert, for example, a 150 mm diameter, 2 mm-thick wafer having an exposed silicon surface area of about 175 cm2 per side into about 1000 slivers having dimensions of 100 mm × 2 mm × 0.1 mm, yielding a total exposed silicon surface area of about 2000 cm2 per side. As a result of this rotation, the electrical doping and contacts that were on the face of the wafer are located at the edges of the sliver, rather than at the front and rear as in the case of conventional wafer cells. This has the interesting effect of making the cell sensitive from both the front and rear of the cell (a property known as bifaciality).[57] Using this technique, one silicon wafer is enough to build a 140 watt panel, compared to about 60 wafers needed for conventional modules of same power output.


Thin-film processing[మార్చు]


Thin-film photovoltaic cells can use less than 1% of the expensive raw material (silicon or other light absorbers) compared to wafer-based solar cells, leading to a significant price drop per Watt peak capacity. There are many research groups around the world actively researching different thin-film approaches and/or materials. However, it remains to be seen if these solutions can achieve a similar market penetration as traditional bulk silicon solar modules.[58]


One particularly promising technology is crystalline silicon thin films on glass substrates. This technology combines the advantages of crystalline silicon as a solar cell material (abundance, non-toxicity, high efficiency, long-term stability) with the cost savings of using a thin-film approach.[59][60]


Another interesting aspect of thin-film solar cells is the possibility to deposit the cells on all kind of materials, including flexible substrates (PET for example), which opens a new dimension for new applications.[61]


Metamorphic multijunction solar cell[మార్చు]

The National Renewable Energy Laboratory won a R&D Magazine's R&D 100 Awards for its Metamorphic Multijunction Solar Cell, an ultra-light and flexible cell that converts solar energy with record efficiency.[62]


The ultra-light, highly efficient solar cell was developed at NREL and is being commercialized by Emcore Corp.[63] of Albuquerque, N.M., in partnership with the Air Force Research Laboratories Space Vehicles Directorate at Kirtland Air Force Base in Albuquerque.


It represents a new class of solar cells with clear advantages in performance, engineering design, operation and cost. For decades, conventional cells have featured wafers of semiconducting materials with similar crystalline structure. Their performance and cost effectiveness is constrained by growing the cells in an upright configuration. Meanwhile, the cells are rigid, heavy and thick with a bottom layer made of germanium.


In the new method, the cell is grown upside down. These layers use high-energy materials with extremely high quality crystals, especially in the upper layers of the cell where most of the power is produced. Not all of the layers follow the lattice pattern of even atomic spacing. Instead, the cell includes a full range of atomic spacing, which allows for greater absorption and use of sunlight. The thick, rigid germanium layer is removed, reducing the cell's cost and 94% of its weight. By turning the conventional approach to cells on its head, the result is an ultra-light and flexible cell that also converts solar energy with record efficiency (40.8% under 326 suns concentration).


Polymer processing[మార్చు]

The invention of conductive polymers (for which Alan Heeger, Alan G. MacDiarmid and Hideki Shirakawa were awarded a Nobel prize) may lead to the development of much cheaper cells that are based on inexpensive plastics. However, organic solar cells generally suffer from degradation upon exposure to UV light, and hence have lifetimes which are far too short to be viable. The bonds in the polymers, are always susceptible to breaking up when radiated with shorter wavelengths. Additionally, the conjugated double bond systems in the polymers which carry the charge, react more readily with light and oxygen. So most conductive polymers, being highly unsaturated and reactive, are highly sensitive to atmospheric moisture and oxidation, making commercial applications difficult.


Nanoparticle processing[మార్చు]

Experimental non-silicon solar panels can be made of quantum heterostructures, e.g. carbon nanotubes or quantum dots, embedded in conductive polymers or mesoporous metal oxides. In addition, thin films of many of these materials on conventional silicon solar cells can increase the optical coupling efficiency into the silicon cell, thus boosting the overall efficiency. By varying the size of the quantum dots, the cells can be tuned to absorb different wavelengths. Although the research is still in its infancy, quantum dot modified photovoltaics may be able to achieve up to 42% energy conversion efficiency due to multiple exciton generation (MEG).[64]


Transparent conductors[మార్చు]

Many new solar cells use transparent thin films that are also conductors of electrical charge. The dominant conductive thin films used in research now are transparent conductive oxides (abbreviated "TCO"), and include fluorine-doped tin oxide (SnO2:F, or "FTO"), doped zinc oxide (e.g.: ZnO:Al), and indium tin oxide (abbreviated "ITO"). These conductive films are also used in the LCD industry for flat panel displays. The dual function of a TCO allows light to pass through a substrate window to the active light-absorbing material beneath, and also serves as an ohmic contact to transport photogenerated charge carriers away from that light-absorbing material. The present TCO materials are effective for research, but perhaps are not yet optimized for large-scale photovoltaic production. They require very special deposition conditions at high vacuum, they can sometimes suffer from poor mechanical strength, and most have poor transmittance in the infrared portion of the spectrum (e.g.: ITO thin films can also be used as infrared filters in airplane windows). These factors make large-scale manufacturing more costly.


A relatively new area has emerged using carbon nanotube networks as a transparent conductor for organic solar cells. Nanotube networks are flexible and can be deposited on surfaces a variety of ways. With some treatment, nanotube films can be highly transparent in the infrared, possibly enabling efficient low-bandgap solar cells. Nanotube networks are p-type conductors, whereas traditional transparent conductors are exclusively n-type. The availability of a p-type transparent conductor could lead to new cell designs that simplify manufacturing and improve efficiency.


Silicon wafer-based solar cells[మార్చు]

Despite the numerous attempts at making better solar cells by using new and exotic materials, the reality is that the photovoltaics market is still dominated by silicon wafer-based solar cells (first-generation solar cells). This means that most solar cell manufacturers are currently equipped to produce this type of solar cells. Consequently, a large body of research is being done all over the world to manufacture silicon wafer-based solar cells at lower cost and to increase the conversion efficiencies without an exorbitant increase in production cost. The ultimate goal for both wafer-based and alternative photovoltaic concepts is to produce solar electricity at a cost comparable to currently market-dominant coal, natural gas, and nuclear power in order to make it the leading primary energy source. To achieve this it may be necessary to reduce the cost of installed solar systems from currently about US$ 1.80 (for bulk Si technologies) to about US$ 0.50 per Watt peak power.[65] Since a major part of the final cost of a traditional bulk silicon module is related to the high cost of solar grade polysilicon feedstock (about US$ 0.4/Watt peak) there exists substantial drive to make Si solar cells thinner (material savings) or to make solar cells from cheaper upgraded metallurgical silicon (so called "dirty Si").


IBM has a semiconductor wafer reclamation process that uses a specialized pattern removal technique to repurpose scrap semiconductor wafers to a form used to manufacture silicon-based solar panels. The new process was recently awarded the “2007 Most Valuable Pollution Prevention Award” from The National Pollution Prevention Roundtable (NPPR).[66]


Infrared solar cells[మార్చు]

Researchers at Idaho National Laboratory, along with partners at Microcontinuum Inc.[67] in Cambridge, MA and Patrick Pinhero of the University of Missouri, have devised an inexpensive way to produce plastic sheets containing billions of nanoantennas that collect heat energy generated by the sun and other sources, which garnered two 2007 Nano50 awards. The technology is the first step toward a solar energy collector that could be mass-produced on flexible materials. While methods to convert the energy into usable electricity still need to be developed, the sheets could one day be manufactured as lightweight "skins" that power everything from hybrid cars to computers and iPods with higher efficiency than traditional solar cells. The nanoantennas also have the potential to act as cooling devices that draw waste heat from buildings or electronics without using electricity. The nanoantennas target mid-infrared rays, which the Earth continuously radiates as heat after absorbing energy from the sun during the day; also double-sided nanoantenna sheets can harvest energy from different parts of the Sun's spectrum. In contrast, traditional solar cells can only use visible light, rendering them idle after dark.


UV solar cells[మార్చు]

Japan's National Institute of Advanced Industrial Science and Technology (AIST) has succeeded in developing a transparent solar cell that uses ultraviolet (UV) light to generate electricity but allows visible light to pass through it. Most conventional solar cells use visible and infrared light to generate electricity. In contrast, the innovative new solar cell uses ultraviolet radiation. Used to replace conventional window glass, the installation surface area could be large, leading to potential uses that take advantage of the combined functions of power generation, lighting and temperature control.


Also, easily fabricated PEDOT:PSS photovoltaic cells are ultraviolet light selective and sensitive.[68]


3D solar cells[మార్చు]

Three-dimensional solar cells that capture nearly all of the light that strikes them and could boost the efficiency of photovoltaic systems while reducing their size, weight and mechanical complexity. The new 3D solar cells capture photons from sunlight using an array of miniature “tower” structures that resemble high-rise buildings in a city street grid.[69]


Metamaterials[మార్చు]

Researchers at Duke University and Boston College have engineered a metamaterial that utilizes tiny geometric shapes to absorb both the electrical and magnetic properties of electromagnetic waves over a certain frequency range at a level that meets standards of scientific perfection. This results in the total absorption of light, turning it into heat, which can then create energy.[70]


Photovoltaic thermal hybrid[మార్చు]

Systems which combine photovoltaic with thermal solar, the advantage of such a system is that the thermal solar part carries heat away and cools the photovoltaic cells, keeping temperature down lowers the resistance and improves the cell efficiency.[71]


Validation, certification and manufacturers[మార్చు]

National Renewable Energy Laboratory tests and validates solar technologies. There are three reliable certifications of solar equipment: UL and IEEE (both U.S. standards) and IEC.


Solar cells are manufactured primarily in Japan, Germany, Mainland China, Taiwan and United States,[72] though numerous other nations have or are acquiring significant solar cell production capacity. While technologies are constantly evolving toward higher efficiencies, the most effective cells for low cost electrical production are not necessarily those with the highest efficiency, but those with a balance between low-cost production and efficiency high enough to minimize area-related balance of systems cost. Those companies with large scale manufacturing technology for coating inexpensive substrates may, in fact, ultimately be the lowest cost net electricity producers, even with cell efficiencies that are lower than those of single-crystal technologies.


చైనా[మార్చు]

Backed by Chinese government's unprecedented plan to offer subsidies for utility-scale solar power projects that is likely to spark a new round of investment from Chinese solar panel makers. Chinese companies have already played a more important role in solar panels manufacturing in recent years. China produced solar cells/modules with an output of 1,180 MW in 2007 making it the largest producer in the world, according to statistics from China Photovoltaic Association.[73] Some Chinese companies such as Suntech Power, Yingli, LDK Solar Co, JA Solar and ReneSola have already announced projects in cooperation with regional governments with hundreds of megawatts each after the ‘Golden Sun’ incentive program was announced by the government.[74] The new development of solar module manufacturers with thin-film technology such as Veeco and Anwell Technologies Limited will further help to boost the domestic solar industry.[75][76]


అమెరికా సంయుక్త రాష్ట్రాలు[మార్చు]


New manufacturing facilities for solar cells and modules in Massachusetts, Michigan, Ohio, Oregon, and Texas promise to add enough capacity to produce thousands of megawatts of solar devices per year within the next few years from 2008:[77]


In late September 2008, Sanyo Electric Company, Ltd. announced its decision to build a manufacturing plant for solar ingots and wafers in Salem, Oregon. The plant will begin operating in October 2009 and will reach its full production capacity of 70 megawatts (MW) of solar wafers per year by April 2010.


In early October 2008, First Solar, Inc. broke ground on an expansion of its Perrysburg, Ohio, facility that will add enough capacity to produce another 57 MW per year of solar modules at the facility, bringing its total capacity to roughly 192 MW per year. The company expects to complete construction early next year and reach full production by mid-2010.


In mid-October 2008, SolarWorld AG opened a manufacturing plant in Hillsboro, Oregon, that is expected to produce 500 MW of solar cells per year when it reaches full production in 2011.


ఇవి కూడా చూడండి[మార్చు]

మూస:EnergyPortalమూస:Portalpar


ఉపప్రమాణాలు[మార్చు]

  1. Alfred Smee (1849). Elements of Electro-Biology, or The Voltaic Mechanism of Man; of Electro-Pathology, Especially of the Nervous System.... London: Longman, Brown, Green, and Longmans. 
  2. "Light sensitive device" U.S. Patent 24,02,662
  3. D. M. Chapin, C. S. Fuller, and G. L. Pearson; J. Appl. ఫిస్. 25, 676 (1954);
  4. Alferov, Zh. I., V. M. Andreev, M. B. Kagan, I. I. Protasov,and V. G. Trofim (1971). Sov. Phys. Semicond. 4: 2047.  Unknown parameter |tile= ignored (help)
  5. Nobel Lecture PDF (4.62 MB) by Zhores Alferov, p.6
  6. N. Gupta, G. F. Alapatt, R. Podila, R. Singh, K.F. Poole, (2009). "Prospects of Nanostructure-Based Solar Cells for Manufacturing Future Generations of Photovoltaic Modules". International Journal of Photoenergy 2009. doi:10.1155/2009/154059. 
  7. "UD-led team sets solar cell record, joins DuPont on $100 million project". 
  8. "World Record: 41.1% efficiency reached for multi-junction solar cells at Fraunhofer ISE". 
  9. "NREL Solar Cell Sets World Efficiency Record at 40.8 Percent". 
  10. "NREL, DARPA Both Claim Record Solar Efficiency".  మూస:Better citation
  11. March 2009 issue of Photon International
  12. "Highest Silicon Solar Cell Efficiency Ever Reached". 24 October 2008. Retrieved 9 December 2009. 
  13. Green, Martin A (April 2002). "Third generation photovoltaics: solar cells for 2020 and beyond". Physica E: Low-dimensional Systems and Nanostructures 14 (1-2): 65–70. doi:10.1016/S1386-9477(02)00361-2. 
  14. 14.0 14.1 14.2 "What is the Energy Payback for PV?" (PDF). Retrieved 2009-12-23. 
  15. Highest silicon solar cell efficiency ever reached
  16. Würfel, Peter (2005) [2005]. Physics of solar cells. Weinheim: Wiley-VCH. ISBN 3-527-40428-7. 
  17. Eduardo Lorenzo (1994). Solar Electricity: Engineering of Photovoltaic Systems. Progensa. ISBN 8486505550. 
  18. Antonio Luque and Steven Hegedus (2003). Handbook of Photovoltaic Science and Engineering. John Wiley and Sons. ISBN 0471491969. 
  19. 19.0 19.1 Jenny Nelson (2003). The Physics of Solar Cells. Imperial College Press. ISBN 978-1-86094-340-9. 
  20. exp represents the exponential function
  21. A.G. Aberle and S.R. Wenham and M.A. Green, "A new Method for Accurate Measurements of the Lumped Series Resistance of Solar Cells", Proceedings of the 23rd IEEE Photovoltaic Specialists Conference, p. 113-139, 1993.
  22. Nielsen, L.D., Distributed Series Resistance Effects in Solar Cells", IEEE Transactions on Electron Devices, Volume 29, Issue 5, p. 821 - 827, 1982.
  23. ASTM G 173-03, "Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface," ASTM International, 2003.
  24. "Solar Spectral Irradiance: Air Mass 1.5". National Renewable Energy Laboratory. Retrieved 2007-12-12. 
  25. Generally, solar cells on the market today do not produce much electricity from ultraviolet light, instead it is either filtered out or absorbed by the cell, heating the cell. That heat is wasted energy and could even lead to overheating of the cell. This can result in damage to the cell due to lattice vibrations that create defects in the crystalline material.
  26. Cheng-Hsiao Wu and Richard Williams (1983). "Limiting efficiencies for multiple energy-gap quantum devices". J. Appl. Phys. 54: 6721. doi:10.1063/1.331859. 
  27. "UD-led team sets solar cell record, joins DuPont on $100 million project". udel.edu/PR/UDaily. 2007-07-24. Retrieved 2007-07-24. 
  28. "Silicon Solar Cells with Screen-Printed Front Side Metallization Exceeding 19% Efficiency". 
  29. M. Ito, K. Kato, K. Komoto, et al. (2008). "A comparative study on cost and life-cycle analysis for 100 MW very large-scale PV (VLS-PV) systems in deserts using m-Si, a-Si, CdTe, and CIS modules". Progress in Photovoltaics: Research and Applications 16: 17–30. doi:10.1002/pip.770. 
  30. K. L. Chopra, P. D. Paulson, and V. Dutta (2004). "Thin-film solar cells: An overview Progress in Photovoltaics". Research and Applications 12: 69–92. 
  31. "Net Energy Analysis For Sustainable Energy Production From Silicon Based Solar Cells" (PDF). Retrieved 2008-12-30. 
  32. Corkish, Richard (1997). "Can Solar Cells Ever Recapture the Energy Invested in their Manufacture?". Solar Progress 18 (2): 16–17. 
  33. "String ribbon silicon solar cells with 17.8% efficiency". 
  34. 34.0 34.1 Fthenakis, Vasilis M. (August 2004). "Life cycle impact analysis of cadmium in CdTe PV production" (PDF). Renewable and Sustainable Energy Reviews 8: 303–334. doi:10.1016/j.rser.2003.12.001. 
  35. "Thin film CuInSe2/Cd(Zn)S Heterojunction Solar Cell : Characterization and Modeling", Murat Nezir Eron, PhD. Theseis, Drexel University, 1984, Philadelphia
  36. "NREL Sets New CIGS Thin Film Efficiency Record (March 30, 2008)". మూస:Better citation
  37. "Indium". 
  38. Tuttle et el. (2005). Design Considerations and Implementation of Very-Large Scale Manufacturing of CIGS Solar Cells and Related Products. 20th European Photovoltaic Solar Energy Conference and Exhibition. మూస:Better citation
  39. R. M. Swanson, "The Promise of Concentrators," Progress in Photovoltaics: Res. Appl. 8, pp. 93-111 (2000).
  40. http://www.spectrolab.com/DataSheets/TerCel/tercell.pdf
  41. Spectrolab - Frequently Asked Questions
  42. New world record for Nijmegen solar cell (dutch)
  43. http://www.foxbusiness.com/story/markets/industries/finance/solarmer-breaks-world-records-plastic-solar-technology/ Fox Business News
  44. Mayer, A et al. (2007). "Polymer-based solar cells". Materials Today 10 (11): 28. doi:10.1016/S1369-7021(07)70276-6. 
  45. R.W. Collins, A.S. Ferlauto, G.M. Ferreira, C. Chen, J. Koh, R.J. Koval, Y. Lee, J.M. Pearce, and C. R. Wronski, Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry , Solar Energy Materials and Solar Cells, 78(1-4), pp. 143-180, 2003.
  46. J. M. Pearce, N. Podraza, R. W. Collins, M.M. Al-Jassim, K.M. Jones, J. Deng, and C. R. Wronski (2007). "Optimization of Open-Circuit Voltage in Amorphous Silicon Solar Cells with Mixed Phase (Amorphous + Nanocrystalline) p-Type Contacts of Low Nanocrystalline Content". Journal of Applied Physics 101: 114301. 
  47. P. I. Widenborg and A. G. Aberle, "Polycrystalline silicon thin-film solar cells on AIT-textured glass superstrates," Advances in OptoElectronics, vol. 2007, September 2007.
  48. M. L. Terry, A. Straub, D. Inns, D. Y. Song, and A. G. Aberle, "Large open-circuit voltage improvement by rapid thermal annealing of evaporated solid-phase-crystallized thin-film silicon solar cells on glass," Applied Physics Letters, vol. 86, p. 3, April 2005.
  49. http://www.nrel.gov/news/press/release.cfm/release_id=10
  50. http://www.nrel.gov/ncpv/new_in_cpv.html
  51. "World-leading mega scale station for Victoria" (PDF). Solar Systems Pty Ltd. 
  52. http://www.electronicsweekly.com/Articles/2009/11/05/47342/solar-cells-can-significantly-extend-mobile-battery-life-sharp.htm
  53. http://www.renewableenergyworld.com/rea/news/article/2010/01/glitter-sized-solar-photovoltaics-produce-competitive-results?cmpid=WNL-Wednesday-January6-2010
  54. Newswise Science News|Slicing Solar Power Costs with New Wafer-Cutting Method
  55. Nohira T, Yasuda K, Ito Y (2003). "Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon". Nat Mater 2 (6): 397–401. doi:10.1038/nmat900. PMID 12754498. 
  56. Jin X, Gao P, Wang D, Hu X, Chen GZ (2004). "Electrochemical preparation of silicon and its alloys from solid oxides in molten calcium chloride". Angew. Chem. Int. Ed. Engl. 43 (6): 733–6. doi:10.1002/anie.200352786. PMID 14755706. 
  57. 57.0 57.1 "Sliver Technology Research at the Australian National University". 
  58. M. A. Green, "Consolidation of Thin-film Photovoltaic Technology: The Coming Decade of Opportunity," Progress in Photovoltaics: Research and Applications, vol. 14, pp. 383-392, August 2006.
  59. P. A. Basore, "CSG-1: Manufacturing a New Polycrystalline Silicon PV Technology," in Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Hawaii, 2006, pp. 2089-2093.
  60. M. A. Green, P. A. Basore, N. Chang, D. Clugston, R. Egan, R. Evans, D. Hogg, S. Jarnason, M. Keevers, P. Lasswell, J. O'Sullivan, U. Schubert, A. Turner, S. R. Wenham, and T. Young, "Crystalline silicon on glass (CSG) thin-film solar cell modules," Solar Energy, vol. 77, pp. 857-863, 2004.
  61. V. Terrazzoni-Daudrix, F.-J. Haug, C. Ballif, et al., "The European Project Flexcellence Roll to Roll Technology for the Production of High Efficiency Low Cost Thin Film Solar Cells," in Proc. of the 21st European Photovoltaic Solar Energy Conference, 4-8 September 2006, pp. 1669-1672.
  62. NREL: Feature Story - Photovoltaics Innovations Win 2 R&D 100 Awards
  63. Emcore Corporation|Fiber Optics · Solar Power
  64. "Peter Weiss". "Quantum-Dot Leap". Science News Online. Retrieved 2005-06-17. 
  65. R. M. Swanson, "A Vision for Crystalline Silicon Photovoltaics," Progress in Photovoltaics: Research and Applications, vol. 14, pp. 443-453, August 2006.
  66. IBM Press room - 2007-10-30 IBM Pioneers Process to Turn Waste into Solar Energy - United States
  67. MicroContinuum, Inc
  68. J. Yamaura et al. (2003). "Ultraviolet light selective photodiode based on an organic–inorganic heterostructure". Appl. Phys. Lett. 83: 2097. doi:10.1063/1.1610793. 
  69. 3D Solar Cells Boost Efficiency While Reducing Size, Weight and Complexity of Photovoltaic Arrays
  70. New Metamaterial Could Be A Perfect Solar Solution|EcoGeek - Clean Technology
  71. S.A. Kalogirou, Y. Tripanagnostopoulos (2006). "Hybrid PV/T solar systems for domestic hot water and electricity production". Energy Conversion and Management 47 (18-19): 3368. doi:10.1016/j.enconman.2006.01.012. 
  72. Solar Cell Production Jumps 50 Percent in 2007
  73. "High Growth Reported for the Global Photovoltaic Industry". Reuters. 2009-03-10. 
  74. "First Solar’s Gift to China: How to Build a Solar Farm". GreentechMedia. 2009-09-10. 
  75. "Veeco Make Plans to be First CIGS Thin Film Solar Manufacturer in China". AZoNetwork. 2009-09-10. 
  76. "Boost domestic solar industry". China daily. 2009-09-10. 
  77. EERE News: EERE Network News


వెలుపటి వలయము[మార్చు]


మూస:Solar energy

"http://te.wikipedia.org/w/index.php?title=సౌర_ఘటం&oldid=1220176" నుండి వెలికితీశారు