సంఖ్య

వికీపీడియా నుండి
ఇక్కడికి గెంతు: మార్గసూచీ, వెతుకు

అంకె లేదా సంఖ్య (number) అనేది లెక్కించడానికీ, కొలవడానికీ ఉపయోగించే ఒక అంశం. భౌతికంగా అంకెలు అనేవి ప్రకృతిలో లేవు. ఇవి మానవుల మనసులో ఏర్పడిన విషయాలు. ప్రతి సంఖ్యకూ ఒక గుర్తు ను వాడుతారు. మానవజాతి నాగరికత, విజ్ఞానం ప్రగతికి మౌలికమైన అంశాలలో అంకెలు, వాటి గుర్తులు చాలా ప్రముఖ పాత్ర వహిస్తున్నాయి.

అంకెలు, వాటి సంబంధాలనూ విస్తృతపరచే విజ్ఞానాన్ని గణితం లేదా గణిత శాస్త్రం అంటారు.

సంఖ్యలను సూచించే పటం


సంఖ్యలలో రకాలు[మార్చు]

సంఖ్యలలో రకరకాలు ఉన్నాయి. సహజ సంఖ్యలు, పూర్ణాంకాలు, పూర్ణ సంఖ్యలు, కరణీయ సంఖ్యలు, అకరణీయ సంఖ్యలు, వాస్తవ సంఖ్యలు, సంకీర్ణ సంఖ్యలు, బీజీయసంఖ్యలు మొదలైనవి.

సహజ సంఖ్యలు[మార్చు]

అంకెలు


0 | 1 | 2| 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 100 | 108 | 1000 | 1116

ఈ అంకె గురించి




లెక్కించటానికి వాడే 1, 2, 3, వగైరాలని సహజ సంఖ్యలు (natural numbers) అంటారు. సహజ సంఖ్యల సమితిని \mathbb{N} తో సూచిస్తాం. సున్నా సహజ సంఖ్య కాదు. కనిష్ట సహజ సంఖ్య ఒకటి.

సహజ సంఖ్యల చరిత్ర మానవుడి చరిత్ర కంటె పురాతనమైనదని కొందరి నమ్మకం. పక్షులు గూటిలో పెట్టిన గుడ్లలోంచి ఒకటో, రెండో గుడ్లు మనం తీసేస్తే కొన్ని గుడ్లు లోపించాయనే విషయం తల్లి పక్షి గ్రహించగలదని ప్రయోగాత్మకంగా నిరూపించేరు. కనుక లెక్కపెట్టగలగటం అనే పని ఒక్క మానవుడే కాదు, తదితర జీవులు కూడా చెయ్యగలవన్న మాట.

మానవులకి మృగాలకి తేడా ఏమిటంటే, మానవుడు లెక్కించేటప్పుడు భాష వాడతాడు. కాని మనిషి లెక్కించేటప్పుడు వాడే భాషకి, దాని వెనక ఉన్న భావానికి మధ్య ఉండే లంకె తెగడానికి కొంత కాలం పట్టింది.

ఉదాహరణకి, ఫీజీ ద్వీప వాసులు పది పడవల్ని `బోలో` అంటారు, కాని పది కొబ్బరి కాయలని `కోరో` అంటారు. అంటే వారి భాషలో `పది` అనే భావానికి మాట లేదు. మన భాషలలో కూడ వెతికితే ఈ రకం మాటలు దొరుకుతాయి. ఉదాహరణకి ఇంగ్లీషు భాషలో సెంచరి (century) అనే మాట ఉంది. ఈ మాటకి ``నూరు పరుగులు`` అని క్రికెట్ తో పరిచయం ఉన్న ఇండియాలో ఎవరిని అడిగినా చెబుతారు. ఇదే మాట అమెరికాలో వంద సంవత్సరాలని సూచిస్తుంది. అలాగే `కపుల్` (couple) అంటే `జంట`. తెలుగులో `పుంజీ` అంటే నాలుగు. ఇంకా కచ్చితంగా చెప్పాలంటే `నాలుగు చింత పిక్కలు`. ఈ రకం భావంతో లంకె పడ్డ మాటలు ఇంకా చాలా ఉన్నాయి - అన్ని భాషలలోను.

సరి, బేసి; ధన, రుణ సంఖ్యలు[మార్చు]

సహజ సంఖ్యలలో సరి సంఖ్యలు, బేసి సంఖ్యలు అని మరొక విభేదం ఉంది. 2, 4, 6, .. వగైరా సరి సంఖ్యలు. 1, 3, 5, ... వగైరా బేసి సంఖ్యలు.

ఇవే కాకుండా సంఖ్యలలో ధన సంఖ్యలు, రుణ సంఖ్యలు అని ఇంకొక విభేదం ఉంది. ఆర్జన ధన సంఖ్య అనుకుంటే, అప్పు రుణ సంఖ్య. ఆర్జన ధన సంఖ్య అనుకుంటే ఖర్చు రుణ సంఖ్య. రుణ సంఖ్యలనేవి ఉన్నాయనే విషయం బీజగణితానికి బీజం పోసిన భాస్కరాచార్య కి కూడా తెలుసు: 2x + 7 = 3 వంటి బీజగణిత సమీకరణాన్ని పరిష్కరించ వలసిన సందర్భంలో తప్పకుండా రుణ సంఖ్యల అవసరం కనిపిస్తుంది. ధన సంఖ్య అని చెప్పటానికి సంఖ్య ముందు + గుర్తు వేసినా వెయ్యచ్చు, మానేసినా మానెయ్యవచ్చు. కాని రుణ సంఖ్య అని చెప్పటానికి సంఖ్య ముందు - గుర్తు తప్పకుండా వాడాలి. కనుక 7\, ధన సంఖ్య, -7\, రుణ సంఖ్య.

పూర్ణాంకాలు[మార్చు]

ధన సహజ సంఖ్యలు, సున్నకలిపి పూర్ణాంకాలు (Whole numbers) అంటారు. పూర్ణాంకాల సమితిని \mathbb{W} తో సూచిస్తాం. పూర్ణాంకాల సమితిలో సహజ సంఖ్యల సమితి ఒక శుద్ధ ఉప సమితి అవుతుంది. అంటే \mathbb{N}\sub\mathbb{W}.

పూర్ణ సంఖ్యలు[మార్చు]

ధన సహజ సంఖ్యలు, సున్న, రుణ సహజ సంఖ్యలు - ఈ మూడింటిని కలిపి పూర్ణ సంఖ్యలు (integers) అంటారు. పూర్ణ సంఖ్యల సమితిని \mathbb{Z} తో సూచిస్తాం. పూర్ణ సంఖ్యల సమితిలో సహజ సంఖ్యల సమితి మరియు పూర్ణాంకాల సమితులు శుద్ధ ఉప సమితులు అవుతాయి. అంటే \mathbb{N}\sub\mathbb{Z} మరియు \mathbb{W}\sub\mathbb{Z}

అకరణీయ సంఖ్యలు[మార్చు]

పూర్ణాంకాల తరువాత మనకి తరచుగా తారసపడేవి భిన్న సంఖ్యలు. వీటిని ఇంగ్లీషులో `ఫ్రేక్షన్ (fraction)లు అంటారు. తెలుగులో కాని, సంస్కృతంలో కాని `భిన్నం` అంటే మామూలుగా కాకుండా మరొక విధంగా ఉండటం; ఇక్కడ `భాగం` అనే సూచనే లేదు. కాని ఇంగ్లీషులో మాత్రం `ఫ్రేక్షన్` అంటే భాగం అనే అర్థం. భిన్న సంఖ్యలకు అకరణీయసంఖ్యలు అని మరోపేరు ఉంది. లవము, హారము ఉండి, లవములో పూర్ణాంకము ఉండి, హారములో ధన పూర్ణాంకము ఉన్నప్పుడు వాటిని అకరణీయ సంఖ్యలు అంటాము.

భిన్నాలు ఎవరు ఎప్పుడు కనుక్కున్నారో తెలియదు. కాని `భిన్నం` అనే భావం మానవుడి పుర్రెలో పుట్టినదే. క్రీస్తు పూర్వం 1650 ప్రాంతాలదైన `రిండ్ పపైరస్’ (Rhind papyrus) లో 1/2, 1/3, 1/4, 1/5 వంటి ఏకలవ భిన్నాలకి (అంటే లవంలో 1 ఉన్న భిన్నాలు), 2/3 కి ప్రత్యేకమైన మాటలు కనిపిస్తాయి. హిందీలో అర కి 'ఆదా' అనీ, ఒకటిన్నర కి 'అఢాయీ' అనీ, రెండున్నర కి 'డేడ్' అనీ ప్రత్యేకమైన మాటలు ఉన్నాయి. తెలుగులో 1/2 ని అర అనీ, 1/4 ని పావు అనీ అంటాం. మూడు పావులు అని చెప్పాలంటే సంధి చేసి ముప్పావు అంటాం. తెలుగులో 2/3 కి గానీ, తదితర భిన్నాలకి గాని ప్రత్యేకమైన పేర్లు ఉన్నట్లు లేదు. ముప్పేట అంటే 3/4 అనే అర్థం వస్తుంది, కాని ఈ మాట కొబ్బరి కాయ ఎంత ముదిరిందో చెప్పడానికే వాడటం కనబడుతుంది. అకరణీయ సంఖ్యల సమితిని \mathbb{Q} తో సూచిస్తాం. అకరణీయ సంఖ్యల సమితి లో పూర్ణాంకాల సమితి ఒక శుద్ధ ఉపసమితి. అంటే \mathbb{Z}\sub\mathbb{Q} .

కరణీయ సంఖ్యలు[మార్చు]

పూర్ణాంకాలు, భిన్న సంఖ్యలు తరువాత వచ్చే భావాలు మన అనుభవ పరిధికి కొంచెం అతీతంగా ఉంటాయి. ఒక నిష్పత్తి రూపంలో వ్రాయగలిగే సంఖ్యలు అకరణీయ సంఖ్యలు. అకరణీయ సంఖ్యలు అన్నా, భిన్నాలు అన్నా ఒక్కటే! ఒక సంఖ్యను నిష్పత్తి రూపంలో వ్రాయలేని పక్షంలో ఆ సంఖ్యను కరణీయ సంఖ్య (irrational number)అంటాము. పూర్ణ సంఖ్యలు కానివీ, అకరణీయ సంఖ్యలు కానివీ అయిన సంఖ్యలు కూడా ఉన్నాయనే విషయం యవనులకి అవగతం అయేసరికి వారి ఆశ్చర్యానికి మితి లేదు.


ఒక చతురస్రం లో కర్ణం యొక్క పొడుగుని లెక్క కట్టాలంటే భుజం పొడుగు(అకరణీయ సంఖ్య)ను ఏ అకరణీయ సంఖ్య తో గుణించినా సరి అయిన సమాధానం రాదని పైథాగొరస్ కనుక్కున్నాడు. ఇదే విషయం మరొక విధంగా చెప్పుకోవచ్చు. ఒక చతురస్రం లో కర్ణం పొడుగుకి, భుజం పొడుగుకి మధ్య ఉండే నిష్పత్తిని పూర్ణాంకాలతో వ్యక్త పరచ లేము. మన చతురస్రం యొక్క భుజం పొడుగు ఒక అంగుళం అనుకుంటే, కర్ణం పొడుగు \sqrt{2} (అంటే 2 యొక్క వర్గమూలం) అంగుళాలు. ఈ \sqrt{2} అనే సంఖ్యని మనం సౌలభ్యం కొరకు 1414/1000 అని వ్రాస్తాం. కాని నిజానికి \sqrt{2} ని ఏ విధమైన భిన్నంగా వ్రాసినా అది ఉరమర లెక్కే!. కనుక కరణీయ సంఖ్య కు \sqrt{2} ఒక ఉదాహరణ. పైథాగొరస్ కి కరణీయ సంఖ్యకు మధ్య ఉన్న బాదరాయణ సంబంధాన్ని పురస్కరించుకుని \sqrt{2} కి పైథాగొరస్ సంఖ్య అని పేరు పెట్టేరు.


కరణీయసంఖ్యలు ఉన్నాయనే విషయం మొట్టమొదట పైథాగొరస్ మనోవీధి లోనే మెరిసి ఉండుంటుందని కొందరి సిద్ధాంతం. ఇది నిజమో కాదో ఇదమిత్థంగా ఎవ్వరికీ తెలియదు. ఎందుకంటే బాబిలోనియా లోని మట్టి పలకల మీద చూపిన ఒక లెక్కలో \sqrt{2} యొక్క విలువ 14 దశాంశ స్థానాల వరకు తప్పు లేకుండా కట్టబడి ఉంది. కాని పైథాగొరస్ శిష్యులు తమ కూటమే ఈ ఘన విజయం మొట్టమొదటగా సాధించిందన్న అపోహతో 'శత వృషభ శిరచ్చేద యాగం' (అంటే వంద ఎద్దులని బలి ఇచ్చేరని) చేసేరని ఒక ఐతిహ్యం ఉంది.


ఒక్కొక్క బాహువు పొడుగు ఒక్కొక్క అంగుళం చొప్పున ఉన్న (సమబాహు) చతురస్రం యొక్క కర్ణం \sqrt{2} కరణీయసంఖ్య కదా.కరణీయ సంఖ్యకు మరో ఉదాహరణ సువర్ణ సంఖ్య. రెండు సంఖ్యల నిష్పత్తి వాటి మొత్తానికి, వాటిలో ఒక సంఖ్యకు గల నిష్పత్తికి సమానమైతే (అంటే x,y ధన సంఖ్యలకు , x/y = (x+y)/x అయితే ఆ నిష్పత్తి కూడా కరణీయ సంఖ్యే. దీనిని ముద్దుగా సువర్ణ నిష్పత్తి (golden ratio)లేదా సువర్ణ సంఖ్య అని పిలుస్తారు. దీని విలువ,ఎప్పుడూ (1+\sqrt{5})/2. ఒక దీర్ఘ చతురస్రం పొడుగు వెడల్పులకి మధ్య ఉండే నిష్పత్తి ఈ సువర్ణ సంఖ్యకి దగ్గరగా ఉంటే ఆ దీర్ఘ చతురస్రం కంటికి ఎంతో ఇంపుగా కనిపిస్తుందని చిత్రకారులు అంటారు. అందంగా ఉన్న వాళ్ళ ముఖాలు కొంచెం పరిశీలించి చూడండి. అవి గుండ్రంగా చంద్రబింబాన్ని పోలి ఉంటే చలివిడి ముద్దలాగో, బోర్లించిన సిబ్బిలాగో ఉందంటారు. కోలగా, పొడుగ్గా ఉంటే గజం బద్దలా ఉందంటారు. ముఖం పొడవు, వెడల్పు మధ్య ఉండే నిష్పత్తి సువర్ణ సంఖ్యకి దగ్గరగా ఉన్నప్పుడు ఆ ముఖం అందంగా కనిపిస్తుందిట. ఇలా చెప్పుకుంటూ పోతే, కరణీయ సంఖ్యలకు ఉదాహరణలు కొల్లలుగా దొరుకుతాయి.

వాస్తవ సంఖ్యలు[మార్చు]

పైన ఉదహరించిన సంఖ్యలన్నిటి సముదాయాన్ని వాస్తవ సంఖ్యలు అంటారు. నిడివిని నిక్కచ్చిగా కొలవటానికి వాడే సంఖ్యలే వాస్తవ సంఖ్యలు. దశాంశ పద్ధతి వాస్తవ సంఖ్యలను వ్రాసేటప్పుడు సర్వసాధారణంగా దశాంశ బిందువును ఉపయోగించి వ్రాస్తారు. అలా వ్రాసినప్పుడు ఆ దశాంశ బిందువును ఒకట్ల స్థానంలో ఉన్న అంకెకు కుడిపక్కన ఉంచుతారు. ఉదాహరణకి 123.456\,లో బిందువుకి ఎడమ పక్కన ఉన్న 3 ఒకట్ల స్థానము, 2 పదుల స్థానము, 1 వందల స్థానము అయితే బిందువుకి కుడి పక్క ఉన్న 4 పదింట 4 భాగాలనీ, 5 వందింట 5 భాగాలని, 6 వెయ్యింట 6 భాగాలనీ సూచిస్తుంది. యూరప్ లో కొన్ని చోట్ల బిందువుకి బదులు కామా (,) వాడతారు.

అకరణీయ సంఖ్యలన్నీ వాస్తవ సంఖ్యలే కాని, వాస్తవ సంఖ్యలన్నీ అకరణీయ సంఖ్యలు కావు. ఒక వాస్తవ సంఖ్యను నిష్పత్తిగా వ్రాయలేనియెడల దానిని కరణీయ సంఖ్య అంటారు. ప్రతి వాస్తవ సంఖ్య అకరణీయ సంఖ్య కాని, కరణీయ సంఖ్య కాని అయి తీరాలి. వాస్తవ సంఖ్యల సమితిని \mathbb{R} తో సూచిస్తాం. వాస్తవ సంఖ్యల సమితి లో అకరణీయసంఖ్యల సమితి ఒక శుద్ధ ఉప సమితి. అంటే \mathbb{Q}\sub\mathbb{R} . వాస్తవ సంఖ్యల సమితిలో కరణీయ సంఖ్యల సమితి కూడా ఒక శుద్ధ ఉపసమితి యే.

సంకీర్ణ సంఖ్యలు[మార్చు]

బీజగణితం ధర్మమా అని లభించిన సంఖ్యలలో మరొక జాతివి సంకీర్ణ సంఖ్యలు (complex numbers). ఒక రుణ సంఖ్యకి వర్గమూలం కట్టవలసి వచ్చినప్పుడు సంకీర్ణ సంఖ్యల అవసరం అవగతమవుతుంది. ఈ సందర్భం లోనే -1 యొక్క వర్గమూలాన్ని సూచించటానికి ఒక కొత్త సంఖ్య కనిపెట్టవలసి వచ్చింది. దానినే  i\, అని కాని  j\, అని కాని వ్రాస్తారు. ఇలా వ్రాసినప్పుడు, దీనిని ఊహాత్మక ఏకకము(imaginary unit) అంటారు. గణితంలో సాధారణంగా సంకీర్ణ సంఖ్యలను  a + i b అని వ్రాస్తారు. ఇలా వ్రాసినప్పుడు  a వాస్తవ భాగం (real part),  b సంకీర్ణ భాగం లేదా ఊహాత్మక భాగం (imaginary part) అవుతుంది. కనుక వాస్తవ సంఖ్యల సమితి సంకీర్ణ సంఖ్యల సమితి లో ఒక అంతర్భాగం. సంకీర్ణ సంఖ్యల సమితిని \mathbb{C} తో సూచిస్తాం. అప్పుడు \mathbb{R}\sub\mathbb{C} అన్న మాట.

ఆర్గాండ్ తలము గా కూడా పిలువబడే సంకీర్ణ తలము మీద నున్న బిందువులకు సంకీర్ణ సంఖ్యలను అనుసంధానించవచ్చును. పైన చెప్పిన సంఖ్యా వ్యవస్థలలో ప్రతీదీ తరువాతి దానిలో శుద్ధ ఉపసమితి అవుతుంది.అంటే,సంకేతరూపంలో, \mathbb{N} \sub \mathbb{Z} \sub \mathbb{Q} \sub \mathbb{R} \sub \mathbb{C}.

సంఖ్యారూపాలు(న్యూమరల్స్)[మార్చు]

సంఖ్యలను సంఖ్యారూపము లతో విడతీసి చూడవలసి ఉంటుంది.సంఖ్యలను చిత్రించడానికి ఉపయోగించే గుర్తులు సంఖ్యారూపాలు. ఐదు సంఖ్యకు , పది ఆధారంగా తీసికొన్నప్పుడు,సంఖ్యారూపం '5'; రోమను సంఖ్యారూపం 'V'. సంఖ్యలను చిత్రించడానికి ఉపయోగించే సంకేతాలను గురించి సంఖ్యారూప వ్యవస్థ విభాగం లో చర్చించబడింది. సంఖ్యా రూప వ్యవస్థ చరిత్ర లో ముఖ్యమైనది :చాలాపెద్ద సంఖ్యలను చిత్రించడానికి,ప్రస్తుత దశాంశ పద్ధతిలో వలె, స్థానముల వ్యవస్థ అభివృద్ధి. పెద్ద సంఖ్యలను చిత్రించడానికి రోమను సంఖ్యారూపాలకు సంబంధించి చాలా గుర్తులు కావాలి.

చరిత్ర[మార్చు]

పూర్ణాంకాల చరిత్ర[మార్చు]

మొట్టమొదట సంఖ్యలవాడకం[మార్చు]

మొట్ట మొదటగా సంఖ్యల వాడకం క్రీ.పూ.30000 ప్రాంతంలో జరిగిఉంటుందని ఊహ.ఆసమయానికి చెంది, దొరికిన ఎముకలవంటి వాటి మీద కొన్ని నరుకుల గుర్తులు కనిపించాయి. అవి పోల్చే గుర్తులు అని అనుమానం. ఎన్ని రోజులు జరిగిపోయాయి, ఎన్ని సంఘటనలు జరిగాయి వంటి వాటిని పోల్చుకోవడానికి గుర్తులుగా వీటిని వాడి ఉంటారని అనుకోవచ్చును. దక్షిణ ఆఫ్రికా లోని ఒక గుహ లో దొరికిన సాక్ష్యమే ఇలాంటివాటిలో బాగా పురాతనమైనది. [1]. ఇలాంటి పోల్చే గుర్తులకు స్థాన విలువ (ఇప్పటి దశాంశ పద్ధతి లో ఉన్నటువంటిది)వంటి భావము ఏమీ లేదు.అందువలన, పెద్ద సంఖ్య లను చిత్రించడానికి పరిమితులు ఏర్పడతాయి. కనుక, సంఖ్యారూప వ్యవస్థకోసం ఈ పద్ధతిని ప్రాథమిక వ్యవస్థగా తీసుకోవడానికి అడ్డంకులు ఏర్పడ్డాయి. స్థానవిలువ ను లెక్కలోకి తీసుకొన్న మొదటి వ్యవస్థ 60 ఆధారంగా తీసుకొన్నమెసపుటేమియా వ్యవస్థ క్రీ.పూ.3400 నాటిది. 10 ఆధారంగా తీసుకొన్నవ్యవస్థ ఈజిప్టు లో క్రీ.పూ.3100 నాటిది. [2]

శూన్యం యొక్క చరిత్ర[మార్చు]

శూన్యం లేదా సున్నాను సంఖ్యగా ఉపయోగించడానికీ, స్థాన విలువ వ్యవస్థలో స్థానాన్ని చూపించేటప్పుడు ఉపయోగించడానికీ తేడా గమనించాలి. పురాతన భారతీయ గ్రంథాలు చాలావాటిలో శూన్యము అనే సంస్కృత పదం "అభావం(ఏమీ లేదు)" అనే భావంలో వాడబడింది. కాని గణిత గ్రంథాలలో మాత్రం ఈ శూన్యం అనే పదాన్ని శూన్య సంఖ్య అనే తీసుకోవాలి. [3]. అదేవిధంగా, పాణిని (క్రీ.పూ.5వ శతాబ్దం) సంస్కృత భాషలో భాష-వ్యాకరణం పై వ్రాసిన అష్టాధ్యాయిలో శూన్య(సున్న) పరికర్మను వాడాడు.

లభ్యమైన సమాచారాన్ని బట్టి, ప్రాచీన గ్రీకులకు సున్నకు ఒక సంఖ్య స్థాయి ఉందనే విషయంలో నమ్మకం లేదనిపిస్తుంది. "ఏమీలేనిది(శూన్యం) 'ఎంతోకొంత' ఎలా అవుతుంది?" అనేది వాళ్ల ప్రశ్న. మధ్య యుగం నాటికి ఇది ప్రకృతి, శూన్యం యొక్క అస్తిత్వం, శూన్య ప్రదేశాల గురించిన మత సంబంధమైన, వేదాంతపు చర్చలకు దారి తీసింది. ఎలియా దేశపు జెనో యొక్క విరోధాభాసలు సున్నాకు సంబంధించిన అస్తవ్యస్తపు తీర్మానములపై హెచ్చుగా ఆధార పడ్డాయి.(ప్రాచీన గీకులు 1 సంఖ్యేనా అని పృచ్ఛించేవారు కూడాను). దక్షిణమెక్సికోకు చెందిన ఓల్మెచ్ ప్రజలు, ఆధునిక భావాలు గలవారు, సుమారుగా క్రీ.పూ.4వ శతాబ్దం నాటికి, కాని నికరంగా క్రీ.పూ.40 నాటికి, ఇంచుమించుగా ఇప్పటి సున్న రూపాన్నే వాడడం ప్రారంభించారు. 'మాయా' సంఖ్యా రూపాలు, 'మాయా' పంచాంగంలలో ఇది ఒక విడదీయరాని భాగమై పోయింది. కాని పాత ప్రపంచపు సంఖ్యా రూపాల వ్యవస్థను ఇది ప్రభావితం చెయ్యలేకపోయింది. 130 నాటికి, హిప్పర్చస్, బాబిలోనియనుల వలన ప్రభావితుడై,ప్టోలెమీ సున్నాకు ఒక గుర్తు(ఒక వృత్తం,దానిపైన ఒక అడ్డుగీత)ను షష్ట్యంశ సంఖ్యా రూప వ్యవస్థలో మాత్రం వాడేవాడు. కాని, ఇతరత్రా గ్రీకు సంఖ్యా రూపాలనే వాడుతుండేవాడు. అతడు వ్రాసిన సింటాక్సిస్ మేథెమేటికా(ఆల్మజెస్ట్) రచన యొక్క తరువాతి బైజాన్ టిన్ వ్రాత ప్రతులలో అంతకు ముందటి సున్న రూపం నెమ్మదిగా గ్రీకు అక్షరం ఓమిక్రాన్(omicron) రూపం (ఇతరత్రా దీని అర్థం 70) సంతరించుకొంది. 525 నాటికి, గుర్తుగా కాకుండా, "అభావం(ఏమీలేదు)" అనే అర్థం లో "nulla" అనే పదాన్ని పట్టికలలో రోమను సంఖ్యా రూపం ప్రక్కన అసలు సున్నాగా వాడుతుండేవారు (మొట్టమొదటి తెలిసిన వాడకం డియొనోసియస్ ఎగ్సిగుయస్ ది. భాగ హారం వలన శేషం సున్న వస్తే, "nihil" పదాన్ని(దీనికి కూడా "ఏమీలేదు"అనే అర్థం) ఉపయోగించారు. ఈ మధ్య రకం సున్నాలను తరువాత వచ్చిన గణకయంత్రాల (ఈస్తర్ గణన యంత్రం)లో వాడారు. వీటికి మొదటనున్న అక్షరం N ను (అసలైన సున్న గుర్తుగా), బెడె లేదా అతని సహాధ్యాయి 725 ప్రాంతంలో తయారు చేసిన రోమను సంఖ్యా రూపాల పట్టికలలో ఉపయోగించాడు. 628 ప్రాంతంలోనే బ్రహ్మగుప్తుడు తన బ్రహ్మస్ఫుట సిద్ధాంతంలో సున్న ఉపయోగాన్ని నమోదు చేశాడు. అతడు సున్నను సంఖ్యగా గుర్తించి, దాని తోడి పరికర్మలను గురించి, భాగహారంతో సహా అన్నింటిని చర్చించాడు. ఈ సమయానికి(7వ శతాబ్దం) ఈ భావన కాంబోడియా చేరింది. ఆ తర్వాత ఈ భావన చైనాకు, ఇస్లాం ప్రపంచానికి కూడా చేరిందనడానికి ప్రమాణాలు ఉన్నాయి.

ఋణ సంఖ్యల చరిత్ర[మార్చు]

క్రీ.పూ.100 - క్రీ.పూ.50 ప్రాంతములోనే రుణ సంఖ్యల భావనకు గుర్తింపు వచ్చింది. చైనా వారి గణితకళ పై తొమ్మిది అధ్యాయాలు (జియు-ఝాంగ్ సువాన్షు) లో బొమ్మల వైశాల్యాలను కనుక్కొనేపద్ధతులలో, ధన గుణకము లకు ఎరుపు , రుణ గుణకాలకు నలుపు కడ్డీలను వాడేరు. ప్రాచ్య ప్రపంచంలో రుణ సంఖ్యల ప్రస్తావన ఉండడానికి ఇదే ప్రథమం. పాశ్చాత్య ప్రపంచంలో 3వ శతాబ్దం లో గ్రీసు లో మొదటవచ్చింది. డయొఫాన్టస్ తన అరిథ్మెటికా లో 4x + 20 = 0 సమీకరణానికి సాధన రుణాత్మకం అనీ ,ఇది అసందర్భమనీ పేర్కొన్నాడు. 600 నాటికి భారత దేశం లో అప్పుల గురించి చెప్పేటప్పుడు రుణ సంఖ్యల ఉపయోగం వచ్చింది. పైన చెప్పిన డయొఫాన్టస్ ఉదాహరణ భారతీయ గణితజ్ఞుడు బ్రహ్మగుప్తుడు తన బ్రహ్మస్ఫుటసిద్ధాంతం 628 లో విపులంగా చర్చించాడు. ఇందులో వర్గ సమీకరణం మూలాలు కనుక్కోవడానికి సాధారణ రూపము (ఇది ఇప్పటికీ వాడుకలోఉంది) తీసుక రావడానికి రుణ సంఖ్యలు వాడాడు. అయితే, 12వశతాబ్దము లో, భారతదేశం లో, భాస్కరుడు వర్గ సమీకరణాలకు రుణ మూలాలు వచ్చే సందర్భాలను చూపించి, "వీటిని తీసుకోరాదు,ఎందుకంటే, జనులు రుణ మూలాలను అంగీకరించరు" అన్నాడు.

17వ శతాబ్దం వరకు యూరపు గణితజ్ఞులు చాలామంది రుణ సంఖ్యలు అనే భావనను అడ్డగించారు; కాని ఫిబొనాచ్చి వంటి వారు ,ఆర్థిక సంబంధమైన సమస్యల లో రుణ సాధనలను అంగీకరించారు,అలాంటివాటిని ఖర్చులు గా తీసుకోవచ్చుననే ఉద్దేశ్యంతో(లిబెర్ అబాచి,13వ అధ్యాయం, 1202)లేదా నష్టాలుగా కూడా పరిగణించవచ్చునని(ఫ్లొస్లో). అదే సమయంలో చైనా వారు, రుణ సంఖ్య ను, దానికి అనుగుణమైన ధన సంఖ్య యొక్క సంఖ్యారూపం లో బాగా కుడివైపున ఉన్న శూన్యేతర అంకె పైన అయిమూలగా ఒక గీత గీయడం ద్వారా, సూచించేవారు[ఆధారం కోరబడినది]. యూరపు లో రుణ సంఖ్యల మొట్టమొదటి వాడకం, 15వ శతాబ్దము లోచూకెట్ రచన ద్వారా జరిగింది. అతడు వాటిని ఘాతాలుగా వాడాడు, కాని వాటిని "అసందర్భ సంఖ్యలు" గా పేర్కొన్నాడు. దరిమిలాను, 18వ శతాబ్దం లో కూడా, స్విస్ గణితజ్ఞుడు లియొనార్డ్ ఆయిలర్ అనంతం కన్న రుణ సంఖ్యలు పెద్దవి అనే నమ్మాడు[ఆధారం కోరబడినది]. అంతేకాక సమీకరణాల నుంచి వచ్చిన రుణ ఫలితాలను,అవి అర్థంలేనివి అనే ఉద్దేశ్యం లో, విస్మరించడం మామూలుగాఉండేది.కార్టీసియన్ నిరూపక వ్యవస్థ లో రుణసాధనలు వచ్చినప్పుడు ,డెకార్టెస్ ఇలాగే చేసేవాడు.

అకరణీయ, కరణీయ, వాస్తవ సంఖ్యల చరిత్ర[మార్చు]

అకరణీయ సంఖ్యల చరిత్ర[మార్చు]

భిన్న సంఖ్యల భావన పూర్వ చారిత్రక యుగము నుంచీ ఉన్నదై ఉండవచ్చు. ప్రాచీన ఈజిప్టువాసులు సాధారణ భిన్నము లను ప్రత్యేక సంకేతము లకు మార్చడాన్ని గురించి పుస్తకాలు కూడా వ్రాశారు. సంఖ్యావాదం లో భాగంగా అకరణీయ సంఖ్యావాదాన్ని కూడా ప్రాచీన గ్రీకు, భారతీయ గణిత శాస్త్రజ్ఞులు చర్చించారు. వీటిలో మనకు బాగాతెలిసినది సుమారుగా క్రీ.పూ.300 ప్రాంతానికి చెందిన యూక్లిడ్ ఎలెమెంట్స్ అనే బాగా ప్రముఖమైన రచన. భారతీయ రచనలలో గణిత విద్య లో భాగంగా కొంత సంఖ్యావాదాన్ని కూడా చర్చించిన గ్రంథాలలో స్థానాంగ సూత్రం ముఖ్యమైనది. దశాంశ భిన్నము ల భావనకు, దశాంశ స్థాన విలువకు సంబంధించిన గుర్తుకు దగ్గరి సంబంధం ఉందనిపిస్తోంది. ఈ రెండూ ఒకేసారి జంటగా వృద్ధి చెందాయేమోననిపిస్తుంది.ఉదాహరణకు జైన గణిత సూత్రాలలో పై(π) కి లేదా రెండు కు వర్గ మూలం కు సంబంధించిన దశాంశ భిన్నపు ఉజ్జాయింపులు సర్వ సామాన్యంగా గోచరిస్తాయి. అలాగే, బాబిలోనియా వారి గణిత గ్రంథాలలో షష్ట్యంశ (sexagesimal)భిన్నాల వాడకం తరచుగా కనిపిస్తుంది.

కరణీయ సంఖ్యల చరిత్ర[మార్చు]

కరణీయ సంఖ్యలను గురించిన ప్రశంస మొట్టమొదట 800 - క్రీ.పూ.500 మధ్యకాలం లోని రచన భారతీయ బోధాయన శుల్బ సూత్రాలు లో కనబడింది.[ఆధారం కోరబడినది] కరణీయ సంఖ్యలు ఉంటాయనే విషయం మొదటగా పైథాగొరస్ నిరూపించాడంటారు. కాస్త స్పష్టంగా చెప్పాలంటే, 2 యొక్క వర్గమూలం కరణీయమని రేఖాగణితీయమైన నిరూపణను పైథాగొరస్ శిష్యుడు మెటపొన్ టుమ్ తాలూకు హిప్పసుస్ ఇచ్చాడుట. విషయం ఏమిటంటే,2 యొక్క వర్గమూలం ఒక భిన్నం అని చూపించే ప్రయత్నం లో, హిప్పసుస్ ,కరణీయ సంఖ్యలను కనుగొన్నాడుట. కాని సంఖ్యల యొక్క పూర్ణత్వం లో నమ్మకమున్న పైథాగొరస్ ఈ విషయాన్నిజీర్ణించుకోలేకపోయాడు. తార్కికంగా ఇది తప్పు అని చూపలేక పోయాడు.అతని అంతరాత్మ కరణీయసంఖ్యల అస్తిత్వాన్ని అంగీకరించలేదు. ఫలితంగా, హిప్పసుస్ ను నీళ్ల లో ముంచి చంపివేశాడు. రుణ, పూర్ణాంక, భిన్న సంఖ్యలను పాశ్చాత్య ప్రపంచం పదునారవ శతాబ్దం నాటికి పూర్తిగా అంగీకరించింది. గణితజ్ఞులు వాడే ఆధునిక సంకేతంతో కూడిన దశాంశ భిన్నాలను కూడా పదునేడవ శతాబ్దం నాటికి అంగీకరించింది. పందొమ్మిదవ శతాబ్దం నాటికి గాని, కరణీయ సంఖ్యలను బీజీయ, అబీజీయ(ట్రాన్సెన్డెన్టల్) భాగాలుగా విడదీయడం కాలేదు. అందుచేత కరణీయసంఖ్యల లక్షణాల శాస్త్రీయ పరిశోధనను మరోసారి చేబట్టారు. ఇది యూక్లిడ్ కాలం నుంచీ నిద్రాణంగా ఉంది. 1872 లో కార్ల్ వైర్ స్ట్రాస్ (అతని శిష్యుడుకొస్సక్ ద్వారా), హైనె (క్రెల్లె(Crelle)]], 74), జార్జి కేంటర్ (అన్నలెన్ (Annalen), 5), రిచర్డ్ డెడెకిండ్ ల పరిశోధన ఫలితాలు వెలువడ్డాయి. 1869 లో మేరే ఆలోచన కూడా హైనె ది లాగానే ఉన్నా, ఈ వాదనను 1872 సంవత్సరానికే జోడిస్తారు. వైర్ స్త్రాస్ పద్ధతిని పిన్కెర్లె 1880 లో బాగా ముందుకు తీసుకునివెళ్లాడు. 1888 లో చేసిన తదుపరి పరిశోధన వల్లా, 1894 లో పాల్ టేనరీ మెప్పుదల వల్లా డెడెకిండ్ పరిశోధన మరింత ప్రాముఖ్యతను సంతరించుకొంది. వైర్ స్ట్రాస్, కేంటర్,హైనె ల వాదనలు అనంత శ్రేణుల మీద ఆధారపడ్డాయి. వాస్తవ సంఖ్యా వ్యవస్థకు కోత అనే ఊహ మీద డెడెకిండ్ వాదన ఆధారపడింది. అకరణీయ సంఖ్యలను ప్రత్యేక లాక్షణిక ధర్మాలుగల రెండు భాగాలుగా చెయ్యడమే ఈ "కోత". ఈ విషయంలో వైర్ స్ట్రాస్, క్రోనెకర్ (Crelle, 101), మేరే లు తరువాత పరిశోధనలు చేశారు. కరణీయ సంఖ్యల తో దగ్గరి సంబంధం గల సతత భిన్నములు (1613 లో కటాల్డి ప్రవేశపెట్టాడు) ఆయిలర్ ను ఆకర్షించాయి. తరువాత, జోసెఫ్ లూయీ లెగ్రాంజ్ పరిశోధనల ద్వారా, పందొమ్మిదవ శతాబ్దపు ప్రారంభంలో, ప్రాముఖ్యతను సంతరించుకొన్నాయి. డ్రకెన్ ముల్లెర్(1837), కుంజ్(1857), లెమ్కె(1870),గున్థెర్(1872) ల పరిశోధనలు కూడా ఎన్నదగినవి. 1855 లో రముస్ దీనిని నిర్ధారకము లతో ముడి వేశాడు. దీని ఫలితంగా, నిర్ధారకాలపై, హైనె, మోబియస్, గున్థెర్ ల పరిశోధనలు వెలువడ్డాయి. డిరిష్లె కూడా ఈ విషయం సాధారణ వాదం మీదా, దీని అనువర్తనాల మీదా ఎంతో పరిశోధన చేశాడు.

అబీజీయ(ట్రాన్సెన్డెన్టల్) సంఖ్యలు, వాస్తవ సంఖ్యలు[మార్చు]

1761 లో 'π' అకరణీయంకాదనీ, n అకరణీయం అయి n=0 కాకపోతే, en కరణీయమనీ లాంబెర్ట్ ఇచ్చిన ఉపపత్తులు అబీజీయ(ట్రాన్సెన్డెన్టల్) సంఖ్యలకు సంబంధించిన మొదటి ఫలితాలు. స్థిరాంకం e మొదటగా 1618 లో నేపియర్ కు చెందిన పరిశోధన సంవర్గమానము(లాగరిథం) లలో ప్రస్తావించబడింది. ఈ ఉపపత్తి ని π ఒక అకరణీయ సంఖ్య కు వర్గమూలం కాదని చూపడానికి లెజెండర్ ఉపయోగించాడు. చతుర్థ అంతకంటె హెచ్చు పరిమాణపు సమీకరణాల మూలాలు కనుక్కోవడం ఒక అభివృద్ధి. ఏబెల్-రుఫిని సిద్ధాంతం (రుఫిని 1799, ఏబెల్ 1824) ప్రకారం అలాంటి సమీకరణాల మూలాలను రాడికల్స్ (గణిత పరికర్మలను, మూలాలను వాడగా వచ్చే సూత్రాలు) ద్వారా రాబట్టలేము. అందువలన బీజీయ సంఖ్యల సమితి (బహుపదీయ సమీకరణాల మూలాల అన్నిటి సమితి) ని గురించి తెలుసుకోవలసిన అవసరం ఏర్పడింది. 1832 లో ఎవరిస్ట్ గాల్వా బహుపదీయ సమీకరణాలను సమూహ వాదం తో ముడి వేసి,గాల్వా వాదము నకు తెర తీశాడు. బీజీయసంఖ్యల సమితి కూడా సరిపోలేదు; మొత్తం వాస్తవ సంఖ్యల సమితి లో అబీజీయ(ట్రాన్సెన్డెన్టల్) సంఖ్యల సమితి ఒక శుద్ధ ఉపసమితి అయింది. ఈ విషయాన్ని లూవీ(1844,1851) నిరూపించాడు. 1873 లో e ట్రాన్సెన్డెన్టల్ అని హెర్మిట్ చూపించాడు;1882 లో లిన్డెర్మన్ π ట్రాన్సెన్డెన్టల్ అని చూపించాడు. చివరగా, కేన్టర్ వాస్తవ సంఖ్యాసమితి గణించలేనంత అనంతము అనీ, బీజీయ సంఖ్యల సమితి గణించగల అనంతము అనీ చూపడంద్వారా అబీజీయ(ట్రాన్సెన్డెన్టల్) సంఖ్యలు గణించలేనంత అనంతంగా ఉన్నాయని తేల్చాడు.

అనంతము[మార్చు]

గణితానికి సంబంధించిన అనంతము అనే భావన యజుర్వేదము లో మొదటగా ప్రస్తావించబడింది. అందులో ఒకచోట, "అనంతం లో కొంత భాగం అనంతానికి కలిపినా, తీసివేసినా అనంతమే మిగులుతుంది" అని ఉంది. క్రీ.పూ.400 ప్రాంతం లోని జైన గణితజ్ఞుల వేదాంత చర్చలలో అనంతము ఒక ముఖ్యమైన విషయంగా ఉండేది. ముఖ్యంగా, వాళ్లు అనంతం లో ఐదు రకాల తేడాలు : ఒకటి,రెండు దిశలలో అనంతం, వైశాల్యం లో అనంతం, సర్వత్రా అనంతం, శాశ్వతమైన అనంతం అనే వాటిని గుర్తించారు. పాశ్చాత్య ప్రపంచంలో,గణిత సంబంధమైన అనంతము నకు సాంప్రదాయికమైన నిర్వచనం ఇచ్చిన వాడు ఆరిస్టొటిల్.అతడు అసలు అనంతం, శక్తివంతమైన అనంతం ల మధ్య తేడాను గమనించాడు. చాలామంది యొక్క అభిప్రాయం ప్రకారం రెండవదానికే నిజమైన విలువ ఉంది. గెలీలియో యొక్క రెండు నూతన శాస్త్రాలు లో అనంత సమితుల మధ్య ఏకైక అనుగుణ్యత అనే భావం చర్చించబడింది. కాని, ఈ వాదము లో ముఖ్యమైన ముందడుగును జార్జి కేంటర్ వేశాడు. 1895 లో అతడు నూతన సమితి వాదము పై వ్రాసిన తన పుస్తకాన్ని ప్రకటించాడు. ఇందులో మిగిలిన వాటితో పాటుగా సతత దత్తాంశము ను కూడా ప్రవేశపెట్టాడు. అనంతము నకు ఆధునిక రేఖాగణిత సంబంధమైన వివరణ ప్రొజెక్టివ్ రేఖాగణితం ద్వారా ఇవ్వబడింది. ఇందులో, అంతరిక్షం లోని ప్రతి దిశ మీద ఒక "అనంతం వద్ద ఆదర్శ బిందువు" ప్రవేశపెట్టబడింది. ఒకేదిశ లో ఉన్న సమాంతర రేఖలు అన్నీ ఆదిశలో ఉన్న ఆదర్శ బిందువు వద్ద కలుసుకుంటాయనే స్వీకృతం ను ప్రవేశపెట్టారు. ఇది సుదూర చిత్రణ లో బిందువుల అంతర్ధానానికి సంబందించిన ఊహకు దగ్గరగా ఉంది.

సంకీర్ణ సంఖ్యలు[మార్చు]

క్రీ.శ.1వ శతాబ్దం లో గ్రీకు గణితజ్ఞుడు, పరిశోధకుడు అయిన అలెగ్జాండ్రియా వాసి హెరాన్ పిరమిడ్ యొక్క అసంభవమైన ఫ్రస్టం(frustum) ఘనపరిమాణము ను గురించి చర్చించేటప్పుడు, రుణసంఖ్యల వర్గ మూలాల ప్రశంస మొదటగా కానవచ్చింది. 16వ శతాబ్దం వచ్చేసరికి, మూడవ,నాలుగవ పరిమాణాల బహుపదుల మూలాలకు సూత్రాలు , ఇటలీ గణితజ్ఞులు, కనుక్కొనే సందర్భంలో, వాటి ప్రాముఖ్యత పెరిగింది (చూ.నికోలో ఫోన్టన తార్తాలియా, జెరోలమో కార్దనో). వాస్తవ సాధనలు కావలసి నప్పుడు కూడా, కొన్ని సందర్భాల లో , రుణ సంఖ్యల వర్గ మూలాలు గణిచడం అవసరమవుతుందని త్వరలోనే గ్రహించారు. ఇది చాలా ఇబ్బంది పెట్టించిన వ్యవహారం. ఎందుకంటే, కాస్త నికరంగా ఉండేందుకు, వాళ్లు రుణ సంఖ్యలను తీసుకోనేలేదు. ఇలాంటివాటికి ఊహ అనే పదాన్ని 1637 లో,రెనె డెకార్టెస్, 'అవమానకరమైనది' అనే అర్థం లో, తయారుచేశాడు(సంకీర్ణ సంఖ్యల వాస్తవికత పై చర్చకోసం, చూ.ఊహా సంఖ్యలు). మరింత గడబిడ ను \sqrt{-1}^2=\sqrt{-1}\sqrt{-1}=-1 సమీకరణం సృష్టించింది. ఎందుచేతనంటే, ఇది బీజీయ సమీకరణం \sqrt{a}\sqrt{b}=\sqrt{ab} తో పోలిస్తే అసంగతంగా ఉంది. ఈ సమీకరణం "a","b" లు ధన వాస్తవ సంఖ్యలైనప్పుడు చెల్లుతుంది; అంతేకాక, "a", "b" లలో ఒకటి ధనాత్మకం, రెండోది రుణాత్మకం గా తీసుకొని, సంకీర్ణ సంఖ్యా గణనాలలో వాడుతారు కూడాను. ఈ సర్వ సమీకరణాన్ని(దీనికి సంబంధించిన సర్వ సమీకరణం \frac{1}{\sqrt{a}}=\sqrt{\frac{1}{a}}) a, b లు రెండూ రుణాత్మకాలైనప్పుడు, తప్పుగా వాడినప్పుడు ఆయిలర్ ను కూడా భయపెట్టింది. ఈ ఇబ్బంది క్రమంగా, \sqrt{-1} కు బదులుగా, తప్పుజరుగకుండా ఉండేటందుకు, i అనే గుర్తు వాడకానికి దారితీసింది. 18వ శతాబ్దం అబ్రహం డె మోయర్, లియొనార్డ్ ఆయిలర్ ల శ్రమ ను బాగా చవి చూసింది. డె మోయర్ 1730 లో, అతని పేరు తోనే ప్రసిద్ధమైన సూత్రం డె మోయర్ సూత్రం:

(\cos \theta + i\sin \theta)^{n} = \cos n \theta + i\sin n \theta \,

ను కనిపెట్టాడు. 1748 లో ఆయిలర్ సంకీర్ణ విశ్లేషణ లో ఆయిలర్ సూత్రం:

\cos \theta + i\sin \theta = e ^{i\theta }. \,

ను కనిపెట్టాడు. 1799 లో కాస్పర్ వెస్సెల్ రేఖాగణితాత్మకమైన వ్యాఖ్యానం ఇచ్చేంతవరకు, సంకీర్ణ సంఖ్యల అస్తిత్వం అంగీకరించబడలేదు. చాలా సంవత్సరాల తర్వాత కార్ల్ ఫ్రెద్రిచ్ గౌస్ దీనిని మళ్లీ కనుగొన్నాడు; ఫలితంగా, సంకీర్ణ సంఖ్యా వాదం లో చెప్పుకోదగ్గ అభివృద్ధి వచ్చింది. అయితే వాల్లిస్ 1685 లోనే వ్రాసిన దె ఆల్జెబ్రా ట్రాక్టాటుస్ లో సంకీర్ణ సంఖ్యల రేఖాచిత్రణ కు సంబంధించిన ఊహ ఉన్నది. 1799 లో, గౌస్, బీజగణిత ప్రాథమిక సిద్ధాంతము నకు అందరికీ ఆమోదయోగ్యమైన ఉపపత్తి ని ఇచ్చాడు. దీని ప్రకారం, సంకీర్ణ సంఖ్యలు గుణకాలుగా గల ప్రతి బహు పది యొక్క అన్ని మూలాలు ఆ సంకీర్ణ సంఖ్యా సమితి లోనే ఉంటాయి. సంకీర్ణ సంఖ్యావాదాన్ని అందరికీ ఆమోద యోగ్యమైనదిగా చెయ్యడంలో ఆగస్తిన్ లూయీ కౌషీ, నీల్స్ హెన్రిక్ ఏబెల్ లు పడ్డ శ్రమ తక్కువేమీకాదు. a + bi, "a", "b" లు పూర్ణాంకాలు లేదా అకరణీయాలు,( x^2 + 1 = 0)సమీకరణపు రెండు మూలాల లోను ఒకటి "i") రూపం లోని సంకీర్ణ సంఖ్యలను(గౌసియన్ పూర్ణాంకాలు) గురించి గౌస్ శోధించాడు.x^3 - 1 = 0 సమీకరణపు సంకీర్ణ మూలాన్ని \omega తో సూచిస్తే, a + b\omega రూపం లో ఉండే సంఖ్యలను గురించి ,గౌస్ శిష్యుడు ఫెర్డినాండ్ ఐసెన్ స్టైన్ శోదించాడు. చక్రీయ క్షేత్రాలు అని పిలువబడే (సంకీర్ణ సంఖ్యల) ఇలాంటి ఇతర తరగతులు , k యొక్క పెద్ద విలువలకు, x^k - 1 = 0 సమీకరణపు మూలాల( ఏకకపు మూలాలు) నుంచి వస్తాయి. ఈ సార్వత్రీకరణం ,ముఖ్యంగా కుమ్మర్ కు చెందుతుంది. ఇతడు ఆదర్శ సంఖ్య లను కనుగొన్నాడు. వీటిని 1893 లో ఫెలిక్స్ క్లైన్ రేఖీయ పదార్థాలుగా వర్ణించాడు. సాధారణ క్షేత్ర వాదము ను ఎవరిస్ట్ గాల్వా సృష్టించి, బహుపదీయ సమీకరణం :\ F(x) = 0. ల మూలాల నుంచి జన్మించిన క్షేత్రాల గురించి పరిశోధించాడు. 1850 లో విక్టర్ అలెగ్జాండర్ పుసియుక్స్ ధ్రువాలు,శాఖాబిందువు ల మధ్య తేడా తెలుసుకోవడానికి మొదటి ముందడుగు వేశాడు; సతత విలక్షణ బిందువులు అనే భావాన్ని ప్రవేశపెట్టాడు. ఇది క్రమంగా ,విస్తృత సంకీర్ణ తలము అనే భావానికి దారి తీసింది.

ప్రధానాంకాలు (Prime numbers)[మార్చు]

సుమారుగా సంఖ్యల ప్రారంభ దశనుంచీ ప్రధానాంకాల ను గురించిన జిజ్ఞాస ఉంది. యూక్లిడ్ తాను ఎలెమెంట్స్ పేరుతో వ్రాసిన పుస్తకాలలో ఒక దానిని ప్రధానాంక వాదం కోసం కేటాయించాడు. అందులో ప్రధానాంకాలు అనంతమని నిరూపించి, అంకగణిత ప్రాథమిక సిద్ధాంతము ను స్థాపించాడు. రెండు సంఖ్యల గరిష్ట సామాన్య భాజకము ను కనుక్కోవడానికి వీలైన యూక్లీడియన్ అల్గోరిథం ను ప్రదర్శించాడు.

క్రీ.పూ.240 లో ఎరటోస్థెనెస్ ప్రధాన సంఖ్యలను త్వరగా వేరు చెయ్యడానికి ఎరటోస్థెనెస్ జల్లెడ ను వాడాడు. అయితే, యూరపు లో, ప్రధానాంక వాదానికి సంబంధించిన తరువాతి అభివృద్ధి 18వ శతాబ్దం దాకా జరుగ లేదు. ప్రధానాంకాల విస్తరణ-వ్యాప్తి కి సంబంధించిన ప్రధానాంక సిద్ధాంతము ను 1796 లో ఆద్రియెన్-మారియె లెజెన్ ద్రె ప్రతిపాదించాడు(ఉపపత్తి లేకుండా). ప్రధానాంకాల విస్తరణ కు సంబంధించిన ఫలితాలలో ప్రధానాంకాల వ్యుత్క్రమాల మొత్తం అపసరిస్తుందనడానికి ఆయిలర్ ఇచ్చిన ఉపపత్తి, బాగా పెద్దదిగా ఉన్న ఏ సరి సంఖ్యను అయినా రెండు ప్రధానాంకాల మొత్తము గా చూపెట్టవచ్చు అనే గోల్డ్ బాక్ ప్రతిపాదన కూడా ఉన్నాయి. ప్రధానాంకాల విస్తరణకు సంబంధించిన మరో ప్రతిపాదన రీమాన్ దత్తాంశం. దీనిని 1859 లో బెర్న్ హర్డ్ రీమాన్ రూపొందించాడు. మొత్తానికి 1896 లో జకెస్ హడమార్డ్, ఛార్లెస్ దెల వాలీ-పౌస్సిన్ లు ప్రధానాంక సిద్ధాంతాన్ని నిరూపించారు.

అతి పెద్ద ప్రధానాంకము[మార్చు]

ఒకటి కంటె పెద్దదైన ఏ సహజ సంఖ్యకు అయినా రెండే రెండు భాజకాలు ( అదీ,ఒకటీ తప్ప మరో భాజకం ఉండకూడదు) మాత్రమే ఉంటే , ఆ సహజ సంఖ్య ను ప్రధానాంకము అంటాము. (కాని 1 ప్రధాన సంఖ్య కాదు, సంయుక్త సంఖ్య కాదు). 2,3,5,7,11,...వంటివి ప్రధానాంకాలు. వీటి లో 2 మాత్రమే సరి ప్రధానాంకం. మిగిలినవి బేసి ప్రధానాంకాలు. ప్రధానాంకాలు అనంతంగా ఉంటాయని యూక్లిడ్ నిరూపించాడని పై విభాగంలో గమనించాము. సహజ సంఖ్యల నుంచి ప్రధానాంకాలను రాబట్టడానికి ఎరటోస్థెనెస్ జల్లెడ ఉపయోగ పడుతుంది. ఈ ప్రధానాంకాల లో మనకు తెలిసిన బాగా పెద్ద ప్రధానాంకం ఏది? ప్రధానాంకాలు అనంతం కనుక ఏ ప్రధానాంకం ఇచ్చినా, దానికన్న పెద్దదైన ప్రధానాంకాలు బోలెడు ఉంటాయి. ఆ బోలెడులో ఒక దానిని చెప్పు అని ఈ ప్రశ్నకు అర్థం. ప్రధానాంకాలు కనుక్కోవడానికి బీజీయ సూత్రాలేమీ పని చెయ్యవు. n సహజ సంఖ్య అయినప్పుడు, 2n - 1 రూపంలో ఉండే సంఖ్య లను మెర్సెన్(Mersenne) సంఖ్యలు అంటాము; Mn తో సూచిస్తాము.(గణితజ్ఞుడు, ఫ్రెంచి క్రైస్తవ సన్యాసి మారిన్ మెర్సెన్(French monk Marin Mersenne) (1588-1648)పేరు మీదుగా ఈ నామకరణం జరిగింది). ఈ మెర్సెన్ సంఖ్యల లో ప్రధానాంకాలైనవి ఏవి? అంటే, ఓరకంగా చెప్పాలంటే, Mn ప్రధానాంకమయే n లు ఏవి?
n = 2,3,5,7 అయినప్పుడు Mn ప్రధానాంకము అని తేలికగా సరిచూడవచ్చును; n పెద్దదైనప్పుడు సరిచూడడం కష్టం. కాని, Mn ప్రధానాంకమైతే n ప్రధానాంకము కావాలని తేలికగానే నిరూపించవచ్చును. కనుక, n ప్రధానాంకమైన సందర్భంలో, Mn ప్రధానాంకం అవునా, కాదా అని సరి చూస్తే చాలు.ఇప్పటికి n యొక్క 44 విలువలకు మాత్రమే Mn ప్రధానాంకమని తేలింది. వీటిలో 44వది, n = 32,582,657 అయినప్పుడు వస్తుంది. దీనిని 2006,సెప్టెంబరు 4 న కనిపెట్టారు. ఇదే ఇప్పటి వరకు తెలిసిన బాగా పెద్ద ప్రధానాంకము(ప్రధానాంకాలలో పెద్దది). దశాంశ పద్ధతి లో వ్రాసినప్పుడు, దీనిలో 9,808,358 అంకెలు ఉంటాయి [4]. ( GIMPS / Curtis Cooper & Steven Boone, www.mersenne.org, Great Internet Mersenne Prime Search (GIMPS)). అంటే, తొంభై ఎనిమిది లక్షల అంకెలకు పైన ఉన్నాయి. కోటి అంకెలకు పైన ఉండే ప్రధానాంకాన్ని కనుక్కొన్న వారికి లక్ష డాలర్ల బహుమానం కూడా ఉందిట.
ఆగష్టు 23, 2008 న 45 వ మెర్సెన్ ప్రధానాంకము ను GIMPS కనుగొన్నది. దీనిలో 1,29,78 189 అంకెలు ఉన్నాయి. అంటే కోటి అంకెలకు పైనే ఉన్నాయి కదా. ఆ విధంగా లక్ష డాలర్ల బహుమతిని స్వీకరించింది.
ఇఫ్ఫుడు పది కోట్ల అంకెలకు పైన ఉండే మెర్సెన్ ప్రధానాంకమును మొదటకనుగొన్న వారికి పెద్ద బహుమతి ( ఒక లక్ష పది వేల డాలర్లు ) ఎదురుచూస్తోంది.
ఇప్పటి వరకు 48 మెర్సెన్ ప్రధానాంకాలు తెలుసు. p = 57885161 తో వచ్చే Mp లో 17425170 అంకెలు ఉన్నాయి. ఇదే ఇప్పటి వరకు ( మే 5, 2013 వరకు) తెలిసిన పెద్ద ప్రధానాంకము కూడాను.

మూలాలు[మార్చు]

ఆంగ్ల వికీలో సంబంధిత అంశాలపై వ్యాసాలు[మార్చు]

బయటి లింకులు[మార్చు]

"http://te.wikipedia.org/w/index.php?title=సంఖ్య&oldid=1034899" నుండి వెలికితీశారు