సంగమగ్రామ మాధవుడు

వికీపీడియా నుండి
ఇక్కడికి గెంతు: మార్గసూచీ, వెతుకు
మాధవుడు
జననం క్రీ.శ. 1340 [1][2][3] (or సిర్కా 1350[4])
మరణం క్రీ.శ.1425
నివాస ప్రాంతం సంగమగ్రామ, ఇరింజలకుడ, కేరళ
జాతీయత భారతీయుడు
జాతి నంబూద్రి
వృత్తి ఖగోళ శాస్త్రవేత్త-గణిత శాస్త్రవేత్త
సుపరిచితుడు త్రికోణమితి లో సైన్,కోసైన్,మరియు టాంజెంట్ ప్రమేయాలను వాటి విస్తరణలను కనుగొన్నాడు.
Notable work(s) గోలవాడ, మధ్యమనాయన ప్రకార, వెన్‌వరోహ.
సాధించిన విజయాలు Golavid
మతం హిందూ మతము

మాధవుడు లేదా సంగమగ్రామ మాధవ ( సి.1340 - సి.1425) ఒక ప్రఖ్యాత భారతీయ గణిత శాస్త్రవేత్త మరియు ఖగోళ శాస్త్రవేత్త. ఈయన భారత దేశం లోని కేరళ రాష్ట్రానికి చెందిన (కొచ్చిన్ సమీపం) సంగమగ్రామానికి చెందినవాడు. ఈయన " కేరళ స్కూల్ ఆఫ్ ఆస్ట్రానమీ అండ్ మాథమెటిక్స్" యొక్క వ్యవస్థాపకుడు. ఈయన ప్రపంచములో అనంత శ్రేణీ యొక్క సుమారు అవధిని త్రికోణమితీయ ప్రమేయాలలో చెప్పిన మొదటి వ్యక్తి. ఈ పద్ధతిని "decisive step onward from the finite procedures of ancient mathematics to treat their limit-passage to infinity". అందురు.[1] ఆయన కనుగొన్న గణిత విషయాలు ప్రస్తుతం గణిత విశ్లేషణ గా పిలువబడుతున్నాయి[4] మధ్య యుగ కాలములో గణిత, ఖగోళ శాస్త్రవేత్తలలో ప్రముఖునిగా మాధవుడు కీర్తి గడించాడు. ఆయన గణిత శాస్త్రములో అనంత శ్రేణులు, కలనగణితం, త్రికోణమితి, జ్యామితి మరియు బీజ గణితం పై పరిశోధనలు వేసి అనన్య ఖ్యాతి పొందాడు. మాధవుడు కేరళ పాఠశాల యందు రచించిన గణిత రచనల ఐరోపా దేశాలకు వ్యాప్తి చెందాయని కొందరు పండితుల భావన. ఆ కాలంలో పురాతన "ముజిరిస్" పోర్ట్ చుట్టూ గల జెసుయిట్ మిషనరీస్ మరియు ట్రేడార్సు ద్వారా ఐరోపా దేశాలకు రతలి పోయాయని పండితుల భావన. దీని ప్రభావంతో ఐరోపా దేశాలలో కలనగణిత భావనల అభివృద్ధి జరిగిందని చెప్పవచ్చు[5]

చరిత్ర రచన[మార్చు]

కేరళ నందు మాధవుడు గణితం లో చేసిన ప్రసిద్ధ రచనలకు సాక్ష్యాలు ఉన్నప్పటికీ (ఉదా: "సద్రత్నమాల" సి.1300. అసంపూర్ణమైన ఫలితాల సంపుటి[6]) కేరళ లోని గణిత సాంప్రదాయ అభివృద్ధికి మాధవుడు చేసిన కృషికి అధారాలు లభ్యమైనవి. అయినప్పటికీ మాధవుని అసలు పని యొక్క రచనలు పోయినవి. కేరళ గణీత శాస్త్రవేత్తల రచనల తర్వాత అంశాల పై పనికి శ్రీధరుడు నిరాకరించాడు. ప్రత్యేకించి నీలకంఠ సోమయాజి సి.1500 లో రచించిన "తంత్రసంగ్రహ" పై యితర పరిశోధనలకు నిరాకరించాడు. ఈ తంత్ర సంగ్రహ గ్రంథంలో అనేక అనంత శ్రేణి విస్తరణలు కలవు. యివి sinθ మరియు arctanθ. వంటి త్రికోణమితీయ ప్రమేయాలతో కూడి కలవు. 16 వ శతాబ్దంలోని గ్రంథం "మహజ్ఞాన ప్రకార" లో మాధవుడు π. యొక్క అనేక విస్తరణలకు మూలంగా నిలిచాడు.సి. 1530 లో "జ్యేష్ట దేవ" రచించిన "యుక్తిభాస" అనే మళయాళం భాషలో గల గ్రంధంలో[7] ఈ శ్రేణులు మరియు వాటి ఋజువులు కనిపిస్తాయి.1/(1+x2), with x = tanθ, మొదలగు బహుపదులకు ఈ శ్రేణులు "టైలర్ శ్రేణి" యొక్క పదాల తో విస్తరింపబడినవి.

ఆవిధముగా మాధవుని పని గూర్చి కొంత సమాచారం స్పష్టంగా చెప్పబడినది. "యుక్తి దీపిక"(తంత్ర సంగ్రహవ్యాఖ్య) అను గ్రంథం "జ్యేష్ట దెవ" యొక్క శిష్యుడైన "శాంకర వారియార్" చే రచింపబడినది. దీనిలో sinθ, cosθ, and arctanθ వంటి త్రికోణమితీయ ప్రమేయాలకు అనేక కథనాలు అదె విధంగా కొన్ని లబ్దములు అనగా వృత్తములోని వ్యాసార్థం మరియు చాపం యొక్క లబ్దం గూర్చి వివరణలు యుక్తిభాస లో కనిపిస్తాయి. దాని గూర్చి రాజగోపాల్ మరియు రంగాచారి లు సంస్కృతం లో అసలు వ్యాఖ్యలు గూర్చి వాదులాడుకోలేదు[1]. గతంలో యీ భావనలు నీలకంఠ సోమయాజి నుండి మాధవునికి వచ్చినవని కొందరు. మరికొందరు యివి మాధవుని స్వయంకృషి ఫలితం అని చెప్పేవారు.

మరికొందరు మొదటి గ్రంథం "కారణపద్ధతి"(సి.1375–1475) లేదా "మహాజ్ఞాన ప్రకాశ" అనే గ్రంధాలు మాధవునిచే వ్రాయబడినవని ఊహించారు. కాని యివి అసంభవమైనది[3].

కారణపద్ధతి అనే గ్రంధం కేరల లోని గణీత గ్రంధం అయిన "సద్రత్నమాల" కన్నా పూర్వపు గ్రంధం. అదేవిధంగా "తంత్రసంగ్రహ"మరియు "యుక్తిభాస" అనే గ్రంధాలు 1834 లో సి.ఎం.విష్ చే వ్రాయబడిన వ్యాసాలు. యివి న్యూటన్ కనుగొన్న "మెథడ్ ఆప్ ఫ్లూక్సియాన్స్" కంటే పూర్వపు వ్యాసాలని తెలుస్తున్నది.[6] 20 వ శతాబ్ద మధ్య భాగంలో రష్యా పండితుడు "జుష్‌కెవిచ్" మాధవుని యొక్క మరణ శాసనాలను సందర్శించాడు.[8] and a comprehensive look at the Kerala school was provided by Sarma in 1972.[7]

వంశము[మార్చు]

Explanation of the sine rule in Yuktibhāṣā

మాధవుని కంటే ముందు కాలములోని అనేక మంది ఖగోళ శాస్త్రవేత్తలు : కుతలూర్ కిజహర్(2 వ శతాబ్దం)[9],వరచురి(4 వ శతాబ్దం), శంకరనారాయణ(866 ఎ.డి). ఇంకనూ మనకు తెలియని వ్యక్తులు కూడా ఉండవచ్చును. అయినప్పటికీ మాధవుని తర్వాత కాలంలో గల వారి గూర్చి సరైన సమాచారం కలదు. "పరమేశ్వర నంబూద్రి" మాధవుని యొక్క ప్రత్యక్ష శిష్యుడు."సూర్య సిద్ధాంత" యొక్క పాం ఆకుల పై రచనల ఆధారంగా పరమేశ్వరుని కుమారుడైన "దామోదర" (c. 1400–1500) మరియు నీలకఠ సోమయాజి కూడా శిష్యులని తెలుస్తున్నది. జ్యేష్ట దేవ "నీలకంద" యొక్క శిష్యుడు. "ఆచార్య త్రిక్కంటియూర్" జ్యేష్ట దేవుని శిష్యుడు.[7]

సహకారం[మార్చు]

గణితమును మనం బీజగణితం లోని అనంతమైన పరిశీలనలలో అంతమైన శ్రేణిగా ఊహించుకుంటే , మొదటి సోపానాలు అనంతమైన శ్రేణి విస్తరనలకు దారితీస్తాయి. ఈ అనంత శ్రేణులలో మార్పును మాధవుడు తెలియజేశాడు. ఐరోపా దేశాలలో యిటువంటి మొదటి శ్రేణిని "జేమ్స్ గ్రెగరీ" చే 1667 లో అభివృద్ధి చేయబడినది. ఈ శ్రేణిలో మాధవుని కృషి కనిపిస్తుంది. కాని నిజంగా దోషాలను గుర్తింపబడిన అంచనాలు ఏవో తెలియదు.[10] దీని వల్ల అనంత శ్రేణి యొక్క అవధి భావన అవగతమైనది. అందువల్ల యిటువంటి శ్రేణులు అనగా "ప్రమేయాల విస్తరణ:, "ఘాత శ్రేణులు", "త్రికోనమితీయ శ్రేణులు" మరియు అకరణీయ సంఖ్యల విలువలు మాధవుడు కనుగొనినట్లు తెలియుచున్నది[11].

అనంత శ్రేణులు[మార్చు]

ఆయన కనుగొన్న అనేక విషయాలలో త్రికోణమితీయ ప్రమేయాలైన "సైన్" "కోసైన్" "టాంజెంట్" మరియు "ఆర్క్ టాంజెంట్" ల అనంత శ్రేణులను కనుగొన్నాడు. మరియు వృత్తము యొక్క చుట్టుకొకతను గణించుటకు అనేక పద్ధతులు కనుగొన్నాడు. "యుక్తిభాస" గ్రంధంలో మాధవుని శ్రేణి గూర్చి వివరింపబడి యున్నది. అందులో "టాంజెంట్ విలోమం" ప్రమేయానికి ఘాత శ్రేణుల యొక్క నిరూపణను వివరించడం జరిగినది[12] జ్యేష్టదేవ గ్రంథంలో ఈ క్రిందివిధంగా శ్రేణుల గూర్చి వివరించడం జరిగినది.

The first term is the product of the given sine and radius of the desired arc divided by the cosine of the arc. The succeeding terms are obtained by a process of iteration when the first term is repeatedly multiplied by the square of the sine and divided by the square of the cosine. All the terms are then divided by the odd numbers 1, 3, 5, .... The arc is obtained by adding and subtracting respectively the terms of odd rank and those of even rank. It is laid down that the sine of the arc or that of its complement whichever is the smaller should be taken here as the given sine. Otherwise the terms obtained by this above iteration will not tend to the vanishing magnitude.[13]

This yields:

 r\theta={\frac {r\sin \theta }{\cos \theta
 }}-(1/3)\,r\,{\frac { \left(\sin \theta \right) ^
{3}}{ \left(\cos \theta \right) ^{3}}}+(1/5)\,r\,{\frac {
 \left(\sin \theta \right) ^{5}}{ \left(\cos
\theta \right) ^{5}}}-(1/7)\,r\,{\frac { \left(\sin \theta
 \right) ^{7}}{ \left(\cos \theta \right) ^{
7}}} + \cdots

or equivalently:

\theta = \tan \theta - \frac{\tan^3 \theta}{3} + \frac{\tan^5 \theta}{5} - \frac{\tan^7 \theta}{7} + \cdots

This series was traditionally known as the Gregory series (after James Gregory, who discovered it three centuries after Madhava). Even if we consider this particular series as the work of Jyeṣṭhadeva, it would pre-date Gregory by a century, and certainly other infinite series of a similar nature had been worked out by Madhava. Today, it is referred to as the Madhava-Gregory-Leibniz series.[13][14]

త్రికోణమితి[మార్చు]

మాధవుడు సైన్ యొక్క ఖచ్చితమైన విలువలను పట్టికను తయారుచేశాడు. ఆయన వృత్తం యొక్క పావు భాగంలో సమాన అంతరాలలో 24 చాపాలు గీచి వాటి ఆధారంగా హాఫ్ సైన్ కార్డ్స్ యొక్క విలువలను గణించాడు. యిది మాధవుడు ఈ క్రింది శ్రేణి విస్తరణ ఆధరంగా ఖచ్చితమైన విలువలను గణించాడని తెలుస్తున్నది.[4]

sin q = q – q3/3! + q5/5! – ...
cos q = 1 – q2/2! + q4/4! – ...

The value of π (pi)[మార్చు]

Madhava's work on the value of π is cited in the Mahajyānayana prakāra ("Methods for the great sines").[citation needed] While some scholars such as Sarma[7] feel that this book may have been composed by Madhava himself, it is more likely the work of a 16th-century successor.[4] This text attributes most of the expansions to Madhava, and gives the following infinite series expansion of π, now known as the Madhava-Leibniz series:[15][16]

\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots + \frac{(-1)^n}{2n + 1} + \cdots

which he obtained from the power series expansion of the arc-tangent function. However, what is most impressive is that he also gave a correction term, Rn, for the error after computing the sum up to n terms. Madhava gave three forms of Rn which improved the approximation,[4] namely

Rn = 1/(4n), or
Rn = n/ (4n2 + 1), or
Rn = (n2 + 1) / (4n3 + 5n).

where the third correction leads to highly accurate computations of π.

It is not clear how Madhava might have found these correction terms.[17] The most convincing is that they come as the first three convergents of a continued fraction which can itself be derived from the standard Indian approximation to π namely 62832/20000 (for the original 5th-century computation, see Aryabhata).

He also gave a more rapidly converging series by transforming the original infinite series of π, obtaining the infinite series

\pi = \sqrt{12}\left(1-{1\over 3\cdot3}+{1\over5\cdot 3^2}-{1\over7\cdot 3^3}+\cdots\right)

By using the first 21 terms to compute an approximation of π, he obtains a value correct to 11 decimal places (3.14159265359).[18] The value of 3.1415926535898, correct to 13 decimals, is sometimes attributed to Madhava,[19] but may be due to one of his followers. These were the most accurate approximations of π given since the 5th century (see History of numerical approximations of π).

The text Sadratnamala, usually considered as prior to Madhava, appears to give the astonishingly accurate value of π =3.14159265358979324 (correct to 17 decimal places). Based on this, R. Gupta has argued that this text may also have been composed by Madhava.[3][18]

Algebra[మార్చు]

Madhava also carried out investigations into other series for arclengths and the associated approximations to rational fractions of π, found methods of polynomial expansion, discovered tests of convergence of infinite series, and the analysis of infinite continued fractions.[3] He also discovered the solutions of transcendental equations by iteration, and found the approximation of transcendental numbers by continued fractions.[3]

Calculus[మార్చు]

Madhava laid the foundations for the development of calculus, which were further developed by his successors at the Kerala school of astronomy and mathematics.[11][20] (It should be noted that certain ideas of calculus were known to earlier mathematicians.) Madhava also extended some results found in earlier works, including those of Bhāskara II.

Madhava developed some components of calculus such as differentiation, term-by-term integration, iterative methods for solutions of non-linear equations, and the theory that the area under a curve is its integral.

Madhava's works[మార్చు]

K.V. Sarma has identified Madhava as the author of the following works:[21][22]

  1. Golavada
  2. Madhyamanayanaprakara
  3. Mahajyanayanaprakara
  4. Lagnaprakarana (लग्नप्रकरण)
  5. Venvaroha (वेण्वारोह)[23]
  6. Sphutacandrapti (स्फुटचन्द्राप्ति)
  7. Aganita-grahacara (अगणित-ग्रहचार)
  8. Candravakyani (चन्द्रवाक्यानि)

Kerala School of Astronomy and Mathematics[మార్చు]

The Kerala school of astronomy and mathematics flourished for at least two centuries beyond Madhava. In Jyeṣṭhadeva we find the notion of integration, termed sankalitam, (lit. collection), as in the statement:

ekadyekothara pada sankalitam samam padavargathinte pakuti,[14]

which translates as the integration a variable (pada) equals half that variable squared (varga); i.e. The integral of x dx is equal to x2 / 2. This is clearly a start to the process of integral calculus. A related result states that the area under a curve is its integral. Most of these results pre-date similar results in Europe by several centuries. In many senses, Jyeshthadeva's Yuktibhāṣā may be considered the world's first calculus text.[6][11][20]

The group also did much other work in astronomy; indeed many more pages are developed to astronomical computations than are for discussing analysis related results.[7]

The Kerala school also contributed much to linguistics (the relation between language and mathematics is an ancient Indian tradition, see Katyayana). The ayurvedic and poetic traditions of Kerala can also be traced back to this school. The famous poem, Narayaneeyam, was composed by Narayana Bhattathiri.

ప్రభావం[మార్చు]

మాధవుడు " భారత దేశ మధ్య యుగంలో ప్రముఖ గణిత శాస్త్రవేత్త మరియు ఖగోళ శాస్త్రవేత్త" గ పిలువబడినాడు.[3] లేదా "గణిత శాస్త్ర విశ్లేషణల యొక్క స్థాపకుడు; ఆయన కనుగొన్న విషయాలు అద్భుతమైనవి."[24] ఓ.కోన్నెర్ మరియు రాబర్ట్ సన్ లు మాధవుడు నవీన క్లాసికల్ అనాలసిస్ యందు నిర్ణయాత్మకమైన అడుగు వేశాడని చెప్పారు[4].

ఐరోపా దేశాలకు వ్యాప్తి చెందే అవకాశం[మార్చు]

కేరళ స్కూల్ 15వ మరియు 16వ శతాబ్దాలలో ప్రసిద్ధిచెందినది. ఆ కాలంలో యూరోపియన్ నావికులు మలబార్ తీరం నకు వచ్చేవారు. వీరు ఈ పాఠశాలతో సంబంధం కలిగి యుండేవారు. ఆ సమయంలో సంగమగ్రామ పట్టణానికి సమీపంలో గల "ముజిరిస్" నౌకాశ్రయం " సముద్ర వాణిజ్యము నకు ముఖ్య కేంద్రంగా నుండెడిది. ఈ ప్రాంతంలో అనేక మంది జెసూయెట్ మిషనరీస్ మరియు వర్తకులు ఉండేవారు. కేరళ స్కూల్ ప్రాముఖ్యం తెలుసుకొన్న కొందరు సెసూయిట్ వర్గాలు యిందులో చేరుటకు ఆశక్తి కనబరిచాయి. ఈ కాలంలో యు. మాంచెస్టర్ కు చెందిన జి.జోసెఫ్ కు కూడా స్థానిక ఉపకార వేతనం వచ్చినట్లు తెలియు చున్నది.[25] ఆ కాలంలో కేరళ స్కూల్ యందు రచనలు ఐరోపా దేశాలకు వ్యాప్తి చెందవచ్చు. ఈ రచనలు న్యూటన్ శతాబ్దానికి ముందు శతాబ్దానికి చెందినవి. [5] ఈ రచనలకు యూరోపియన్ అనువాదాలు జరుగలేదు. ఈ భావనలు నవీన ఐరోపా యందు కలనగణితం అభివృద్ధికి తోడ్పడ్డాయి.

యివి కూడా చూడండి[మార్చు]

సూచికలు[మార్చు]

  1. 1.0 1.1 1.2 C. T. Rajagopal and M. S. Rangachari (June 1978). "On an untapped source of medieval Keralese Mathematics". Archive for History of Exact Sciences 18 (2): 89–102. 
  2. Roy, Ranjan (1990). "The Discovery of the Series Formula for π by Leibniz, Gregory and Nilakantha" (PDF). Mathematics Magazine 63 (5): 291–306. 
  3. 3.0 3.1 3.2 3.3 3.4 3.5 Ian G. Pearce (2002). Madhava of Sangamagramma. MacTutor History of Mathematics archive. University of St Andrews.
  4. 4.0 4.1 4.2 4.3 4.4 4.5 J J O'Connor and E F Robertson (2000). "Madhava of Sangamagramma". MacTutor History of Mathematics archive. School of Mathematics and Statistics, University of St Andrews, Scotland. Retrieved 2007-09-08. 
  5. 5.0 5.1 D F Almeida, J K John and A Zadorozhnyy (2001). "Keralese mathematics: its possible transmission to Europe and the consequential educational implications". Journal of Natural Geometry 20 (1): 77–104. 
  6. 6.0 6.1 6.2 Charles Whish (1834). "“On the Hindu Quadrature of the circle and the infinite series of the proportion of the circumference to the diameter exhibited in the four Sastras, the Tantra Sahgraham, Yucti Bhasha, Carana Padhati and Sadratnamala”". Transactions of the Royal Asiatic Society of Great Britain and Ireland (Royal Asiatic Society of Great Britain and Ireland) 3 (3): 509–523. doi:10.1017/S0950473700001221. JSTOR 25581775 
  7. 7.0 7.1 7.2 7.3 7.4 మూస:Cite webకే
  8. A.P. Jushkevich, (1961). Geschichte der Mathematik im Mittelalter (German translation, Leipzig, 1964, of the Russian original, Moscow, 1961). Moscow. 
  9. Purananuru 229
  10. C T Rajagopal and M S Rangachari (1986). "On medieval Keralese mathematics,". Archive for History of Exact Sciences 35: 91–99. doi:10.1007/BF00357622. 
  11. 11.0 11.1 11.2 "Neither Newton nor Leibniz – The Pre-History of Calculus and Celestial Mechanics in Medieval Kerala". MAT 314. Canisius College. Retrieved 2006-07-09. 
  12. "The Kerala School, European Mathematics and Navigation". Indian Mathemematics. D.P. Agrawal—Infinity Foundation. Retrieved 2006-07-09. 
  13. 13.0 13.1 R C Gupta (1973). "The Madhava-Gregory series". Math. Education 7: B67–B70. 
  14. 14.0 14.1 "Science and technology in free India" (PDF). Government of Kerala—Kerala Call, September 2004. Prof. C.G.Ramachandran Nair. Retrieved 2006-07-09. 
  15. George E. Andrews, Richard Askey, Ranjan Roy (1999). Special Functions. Cambridge University Press. p. 58. ISBN 0-521-78988-5. 
  16. Gupta, R. C. (1992). "On the remainder term in the Madhava-Leibniz's series". Ganita Bharati 14 (1–4): 68–71. 
  17. T. Hayashi, T. Kusuba and M. Yano. 'The correction of the Madhava series for the circumference of a circle', Centaurus 33 (pages 149–174). 1990.
  18. 18.0 18.1 R C Gupta (1975). "Madhava's and other medieval Indian values of pi". Math. Education. 9 (3): B45–B48. 
  19. The 13-digit accurate value of π, 3.1415926535898, can be reached using the infinite series expansion of π/4 (the first sequence) by going up to n = 76
  20. 20.0 20.1 "An overview of Indian mathematics". Indian Maths. School of Mathematics and Statistics University of St Andrews, Scotland. Retrieved 2006-07-07. 
  21. Sarma, K.V. (1977). Contributions to the study of Kerala school of Hindu astronomy and mathematics. Hoshiarpur: V V R I. 
  22. David Edwin Pingree (1981). Census of the exact sciences in Sanskrit,. A 4. Philadelphia: American Philosophical Society. pp. 414–415. 
  23. K Chandra Hari (2003). "Computation of the true moon by Madhva of Sangamagrama". Indian Journal of History of Science 38 (3): 231–253. Retrieved 27 Januaraay 2010. 
  24. Joseph, George Gheverghese (October 2010) [1991]. The Crest of the Peacock: Non-European Roots of Mathematics (3rd ed.). Princeton University Press. ISBN 978-0-691-13526-7. 
  25. "Indians predated Newton 'discovery' by 250 years". press release, University of Manchester. 13 August 2007. Retrieved 2007-09-05.