బ్రహ్మగుప్తుడు

వికీపీడియా నుండి
ఇక్కడికి గెంతు: మార్గసూచీ, వెతుకు

బ్రహ్మగుప్తుడు (క్రీ.శ 598-668) ఒక ప్రాచీన భారతీయ గణితవేత్త, మరియు ఖగోళవేత్త. గణిత, ఖగోళ శాస్త్రలను చెందిన అనేక రచనలు చేసాడు. వాటిల్లో ప్రముఖమైనది బ్రాహ్మస్ఫుటసిద్ధాంతం. సున్న ని ఒక సంఖ్యగా వాడిన మొట్టమొదటివాడు, బ్రహ్మగుప్తుడు. సున్న గణించడానికి నియమాలని నిర్దేశించాడు. రెండు ఋణసంఖ్యల గుణకారం ధనాత్మకం అవుతుందని ఆధునిక గణితం చెప్పుకుంటున్న నియమం మొదటగా కనిపించేది, బ్రాహ్మస్ఫుటసిద్ధాంతం లోనే. తన శ్లోకాలను ఛందోబద్ధంగా రాయడం వలన, ఈ శ్లోకాలు పాడుకోడానికి కూడా అనువుగా ఉంటాయి. బ్రహ్మగుప్తుడు, తన వాడిన సిద్ధాంతాలకి నిరూపణలని ఇవ్వకపోవడంవలన, కొన్నిటికీ నిరూపణలెలానో తేల్చిచెప్పలేకపోతున్నారు.

జీవితం మరియు రచనలు[మార్చు]

బ్రహ్మగుప్తుడు క్రీ.శ 598 సంవత్సరంలో, నేటి రాజస్తాన్ లోని భిన్మల్ పట్నంలో జన్మించాడని భావిస్తారు. భిన్మల్ యొక్క పూర్వనామం భిల్లమల. ఇది గూర్జరుల మూలస్థానం. ఇతని తండ్రి జిష్ణుగుప్తుడు. ఇతడు తన జీవితం ఎక్కువభాగం భిల్లమలలోనే గడిపి ఉండవచ్చును. రాజా వ్యాఘ్రముఖ ఆస్థానంలోని వాడు కావచ్చునని కూడా భావిస్తున్నారు. ఉజ్జయినిలోని ఖగోళ వేధశాలకి అధిపతిగా పనిచేసిన కాలంలోనే నాలుగు రచనలు చేసాడు. క్రీ.శ 624లో చాదమేఖల, 628లో బ్రాహ్మస్ఫుటసిద్ధాంతం, 665లో ఖండఖాద్యకం, 672లో దుర్ఖేమ్నన్యార్ద. బ్రాహ్మస్ఫుటసిద్ధాంతం, వీటన్నింటిలోకి ప్రపంచప్రసిద్ధమైనది.

గణితశాస్త్రం[మార్చు]

బీజగణితం[మార్చు]

అంకగణితం[మార్చు]

శ్రేఢులు[మార్చు]

సున్న[మార్చు]

డియొఫెంటైన్ విశ్లేషణ[మార్చు]

పైథాగరస్ త్రికాలు[మార్చు]

పెల్ సమీకరణం[మార్చు]

రేఖాగణితం[మార్చు]

బ్రహ్మగుప్తుని సూత్రం[మార్చు]

Diagram for reference

చక్రీయ బహుభుజిలకి సంబంధించి బ్రహ్మగుప్తుడు సాధించిన సూత్రం చాలా ప్రసిద్ధి పొందింది. భుజాల పొడవుల తెలిసినపుడు బహుభుజిల వైశాల్యాన్ని ఉజ్జాయింపుగానో, ఖచ్చితంగా లెక్కించే సూత్రాన్ని బ్రహ్మగుప్తుడు సూచించాడు.

12.21. ఉజ్జాయింపు వైశాల్యం, బహుభుజి, త్రిభుజాల భుజాల మరియు ఎదుటి భుజాల యొక్క మొత్తంలోని సగాల లబ్ధం. ఖచ్ఛితమైన వైశాల్యం, అన్ని భుజాల యొక్క మొత్తంలో సగం నుండి వివిధ భుజాల తగ్గింపుల లబ్ధం యొక్క వర్గమూలం. [1]

s p, q, r మరియు sలు చక్రీయ బహుభుజి యొక్క భుజాల పొడవులు అయితే, దాని ఉజ్జాయింపు వైశాల్యం (\tfrac{p + r}{2}) (\tfrac{q + s}{2}) మరియు  \tfrac{p + q + r + s}{2} = t అనుకొంటే, ఖచ్ఛితమైన వైశాల్యం

\sqrt{(t - p)(t - q)(t - r)(t - s)}.

బ్రహ్మగుప్తుడు, ఇవి చక్రీయ బహుభుజులకని ప్రత్యేకంగా పేర్కననప్పటికీ, వీటికి చెందినవేనని మనం గుర్తించవచ్చు. హీరో సూత్రం , బ్రహ్మగుప్తుని సూత్రంలోని ప్రత్యేకమైన కేసు, మరియు ఏదో ఒక భుజాన్ని సున్న అనుకోవడం ద్వారా హీరో సూత్రాన్ని సాధించవచ్చు.

త్రిభుజాలు[మార్చు]

బ్రహ్మగుప్తుని సిద్ధాంతం[మార్చు]

పై[మార్చు]

40వ శ్లోకం లో, పై విలువని సూచించాడు.

12.40. వృత్తం యొక్క వ్యాసం మరియు వ్యాసార్థం యొక్క వర్గాలను 3 తో గుణిస్తే వృత్తం చుట్టుకొలత, వైశాల్యాల ప్రాక్టికల్ విలువ వస్తుంది. కచ్చితమైన విలువ కోసం 3 కి మారుగా 10 యొక్క వర్గమూలంతో గుణించాలి. [1]

అందువలన π' విలువని "ప్రాక్టికల్" గా లెక్కించడానికి 3నీ, "కచ్చితం"గా లెక్కించడానికి d \sqrt{10} వాడాడు.

కొలతలు మరియు నిర్మాణాలు[మార్చు]

త్రికోణమితి[మార్చు]

సైన్ పట్టిక[మార్చు]

ఇంటర్ పొలేషన్ సూత్రం[మార్చు]

ఖగోళశాస్త్రం[మార్చు]

బ్రాహ్మస్ఫుట సిద్ధాంతం ద్వారానే అరబ్బులు, భారతీయ ఖగోళ విజ్ఞానాన్ని నేర్చుకున్నారు. ఎడ్వర్డ్ సక్సహూ "అరబ్బులకు ఖగోళశాస్త్రాన్ని నేర్పినది, బ్రహ్మగుప్తుడే" అని అంటాడు. బాగ్దాద్ నగర నిర్మాత, అబ్బాసిడ్ ఖలీఫా, అల్-మన్సూర్, కంక అనే పండితుణ్ణి ఉజ్జయిని నగరం నుండి పిలిపించాడు. అంకగణిత ఖగోళశాస్త్రాన్ని నేర్పడానికి కంక, బ్రాహ్మస్ఫుటసిద్ధాంతం యొక్క సహాయాన్ని తీసుకున్నాడు. ఖలీఫా కోరిక మేరకు, మొహమ్మద్ అల్-ఫజారీ బ్రాహ్మస్ఫుటసిద్ధాంతాన్ని అరబ్బీలోనికి అనువదించాడు.

ఇవి కూడా చూడండి[మార్చు]

రిఫరెన్సులు[మార్చు]

  1. ఉదహరింపు పొరపాటు: సరైన <ref> కాదు; Plofker_Brahmagupta_quote_Chapter_12 అనే పేరుగల ref లకు పాఠ్యమేమీ ఇవ్వలేదు