మహావీరాచార్య (గణిత శాస్త్రవేత్త)

వికీపీడియా నుండి
(మహావీర (గణిత శాస్త్రవేత్త) నుండి దారిమార్పు చెందింది)
Jump to navigation Jump to search

మహావీరాచార్యుడు 9 వ శతాబ్దానికి చెందిన గణిత శాస్త్రవేత్త.

జీవిత విశేషాలు[మార్చు]

ఈయన భారత దేశానికి చెందిన గుల్బర్గాకు చెందిన వాడు. ఈయన జైనుడు. జైన సామాన్య ధర్మమగు విషయ విస్తార ప్రావీణ్యం ఈతని యందు కనిపించును. ఈయన ఋణ సంఖ్యలకు వర్గమూలము కట్టలేమని వివరించాడు. ఈయన అంకశ్రేఢి లోని పదముల వర్గముల మొత్తాన్ని కనుగొన్నాడు. దీర్ఘవృత్తము యొక్క వైశాల్యం మరియు చుట్టుకొలత లకు నియమాలను ప్రవేశపెట్టాడు. రాష్ట్రకూట రాజగు అమోఘవర్షుని[1] రాజ్య కాలమున తన గణితసార సంగ్రహము[2]ను క్రీ.శ 814 - 877 మధ్య రచించెను. ఈయన "జ్యోతిష శాస్త్రము"ను గణిత శాస్త్రము నుండి వేరు చేశాడు. ఈయన ఆర్యభట్టు మరియు బ్రహ్మగుప్తుడు కృషిచేసిన విషయములపైనే కృషిచేశాడు. వారు తెలియజేసిన విషయాలను వివరణాత్మకంగా వివరించాడు. ఈయన భారతీయ శాస్త్రవేత్తలలో అగ్రగణ్యుడుగా ప్రసిద్ధి పొందాడు. ఈయన "సమబాహు త్రిభుజం", "సమద్విబాహు త్రిభుజం" మరియు రాంబస్ ల యొక్క భావనలను వృద్ధి చేశాడు. వృత్తము మరియు అర్థవృత్తము భావనలను వివరించాడు. ఈయన వ్రాసిన గ్రంథములు దక్షిణ భారతదేశములో ఇతర గణిత శాస్త్రవేత్తలకు మార్గదర్శకములు అయ్యాయి[3]. ఈయన వ్రాసిన గ్రంథమును తెలుగు లోనికి పావులూరి మల్లన అనువదించాడు. తెలుగులో ఈ గ్రంథం పేరు "సార సంగ్రహ గణితము"గా మార్చబడింది.

గణిత సార సంగ్రహం[మార్చు]

మహావీరుడు తన గ్రంథంలో మొదటి అధ్యాయమందు సంఖ్యలు వేళ్ళను, దైర్ఘ్య భార ఏకాంకములు మొదలగు వాటిని చర్చించెను. రెండవ అధ్యాయంలో ప్రధాన గణిత పరికర్మలను చర్చించెను. పరంపరలు సంకలన వ్యాపార విషయములగుటచే ఇచ్చట చర్చింపబడినవి. సంకలన శ్రేఢి నిరూపణ మొదటి ఆర్యభట్టు, బ్రహ్మ గుప్త రచనలలో సంగ్రహముగ కనబడు దాని విస్తరణమే ఇచ్చట మనం చూడవచ్చును. కాని ఇతని గుణోత్తర శ్రేఢి నిరూపణ జైన సాంప్రదాయక గ్రంథముల నుండియు, పింగళఛ్ఛంద సూత్రముల నుండియు ఉత్పన్నమైనవి. పలుచోట్ల వికీర్ణమై, విస్తృతమైన విజ్ఞానము ప్రోగుచేసి ఇందు వ్యవస్థీకరించుట మహావీరుడు భారతీయ గణితమునకు చేసిన మహోపకారసేవ.

మహావీరుని గణిత భావనలు[మార్చు]

మహావీరుని అంకశ్రేణి నిరూపణ యందలి విశేష విషయమేమనగా అతడు భిన్నాంకాత్మములగు అవృత్తులను శ్రేఢి యార్థం గ్రహించెను. ఇతనికి ముందు వెలువడిన గ్రంథాలలో కానరాని అమూల్య భావమిది. సంకలన, గుణోత్తర శ్రేఢులందు, వీటి సమ్మేళనములందు, తారసిల్లు అనేక సమస్యలను అతడు ఉటంకించి యున్నాడు. స్పష్టతతో గూడినది వివరించాడు. బ్రహ్మగుప్తుని గ్రంథములందు వలెనే గణిత సార సంగ్రహమందు కూడా ప్రస్తారములు, సంయోగములు, ఛందో సూత్రములకు అన్వయించు రీతి నిరూపింపబడింది. బ్రహ్మ గుప్తుని గ్రంథంలో ఉన్న అస్పష్టతకు ఇందులో తావులేదు. ఆరు జాతుల భిన్నాంక యోగములు సరళీకరించెను.

  1. భాగజాతి
  2. ప్రభాగజాతి
  3. భాగానుభాగ జాతి
  4. భాగావవాహ జాతి
  5. భాగజాతి
  6. భాగ మాతృజాతి

మహావీరుని ఉద్దేశం ప్రకారం ఇట్టి ప్రభేదకములు 26 ఉన్నాయి.

భిన్నాంకముల యొక్క హారముల క.సా.గు నకు మహావీరుడిచ్చిన పేరు "విరుద్ధం". ఈ పదం, ఈ పదానుషక్తమయిన భావం మొదట గణిత సార సంగ్రహంలో మనకి కనిపిస్తుంది.

సరళ భిన్నముల గురించిన అనేక జాతులు, లేదా వర్గ సమీకరణముల సమస్యలను ఇతడు సాధించెను. ఏ భిన్నాంకమునైనను ఒక ఏక లవ భిన్నాంక పరంపర సంకలనముగ నిరూపించుటకు కావలసిన సూత్రములు అనేకము ఉన్నాయి. వాటికి మహావీరుడు వివరణములిచ్చెను. వాటికనేక ఉదాహరణములిచ్చెను.

అంతేకాక, ఏక లవ భిన్నాంకములను, దత్త లవములు గల భిన్నాంక పరంపర సంకలన ఫలంగానూ, ఏ భిన్నాంకమునైను రెండు యితర భిన్నాంకముల సంకలన ఫలంగా ప్రదర్శించుటకై కావలసిన సూత్రములు ఇచ్చెను. ఇట్లు పరంపర ల గణితములో సంభవించిన పురోగతిచే అనుగ్రహీతమయిన భిన్నాంక అంక గణితమందు గణనీయమైన అభివృద్ధిని మహావీరుడు సాధించెను.

ఉన్నత శ్రేణి సమీకరణములు[మార్చు]

మరియు రూపంలో ఉండే n-వ తరగతి ఉన్నత శ్రేణి సమీకరణాలను మహావీరాచార్యుడు సాధించాడు.

చక్రీయ చతుర్భుజ సూత్రములు[మార్చు]

బ్రహ్మగుప్తుడు పూర్వం చెప్పినట్లుగానే, ఆదిత్యుడు కూడా చక్రీయ చతుర్భుజాల లక్షణాలను కొన్నింటిని చెప్పాడు. మహావీరాచార్యుడు కూడా చక్రీయ చతుర్భుజముల భుజములకు, కర్ణములకు సంబంధించిన కొన్ని సంబంధాలను నిరూపించాడు.

ఒక చక్రీయ చతుర్భుజానికి a, b, c, d లు భుజములు, x, yలు కర్ణములు అయి,

మరియు

అయితే, అప్పుడు

ఇవి కూడా చూడండి[మార్చు]

సూచికలు[మార్చు]

  • Bibhutibhusan Datta and Avadhesh Narayan Singh (1962). History of Hindu mathematics: a source book.

మూలాలు[మార్చు]

  1. Mahavira, School of Mathematics and Statistics, University of St Andrews, Scotland
  2. Ed. by M. Rangacarya, Mahavira (1912). Ganitasarasangraha. Madras Government publication. 
  3. Mahavira, Encyclopædia Britannica

ఇతత లింకులు[మార్చు]